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Abstract

An accurate set of traceability relations between
software development artifacts is desirable to support
evolutionary development. However, even where an
initial set of traceability relations has been established,
their maintenance during subsequent development
activities is time consuming and error prone, which
results in traceability decay. This paper focuses solely
on the problem of maintaining a set of traceability
relations in the face of evolutionary change, irrespec-
tive of whether generated manually or via automated
techniques, and it limits its scope to UML-driven
development activities post-requirements specification.
The paper proposes an approach for the automated
update of existing traceability relations after changes
have been made to UML analysis and design mod-
els. The update is based upon predefined rules that
recognize elementary change events as constituent
steps of broader development activities. A prototype
traceMaintainer has been developed to demonstrate
the approach. Currently, traceMaintainer can be used
with two commercial software development tools to
maintain their traceability relations. The prototype
has been used in two experiments. The results are
discussed and our ongoing work is summarized.

Keywords: Change; Post-requirements traceability;
Rule-based traceability; Traceability maintenance.

1 Introduction and problem statement

Traceability relations articulate the dependencies
between artifacts created during a software systems de-
velopment project. These relations help stakeholders to
undertake many development tasks, such as: (a) veri-
fying the implementation of requirements; (b) analyz-
ing the impact of changing requirements; (c) retrieving
rationale and design decisions; and (d) supporting re-
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gression testing after changes have been made. To en-
sure that such benefits accrue, it is necessary to have
an accurate (i.e., representative and up-to-date) set of
traceability relations between the artifacts, established
at a level of granularity that is suitable for the project
at hand. This requires not only the creation of the re-
lations during the initial development process, but also
the maintenance of these relations after changes have
been made to the associated artifacts. The number of
potential traceability relations, even for small software
systems, demands effective method and tool support.

The need to manually establish and maintain trace-
ability relations, and the difficulty to achieve these
tasks automatically as a by-product of development
activities, is a recognized reason for the limited use
and effectiveness of traceability in industrial projects
(Ramesh and Jarke [16], Arkley et al. [3]). Much
of the recent academic research has focused on the
first aspect of this problem through the automated
generation of traceability relations. The majority of
these approaches apply text mining and information
retrieval techniques to identify candidate relations and
have been producing promising results (Alexander [1],
Antoniol et al. [2], Marcus and Maletic [14], Huffman
Hayes et al. [12]). However, they often require man-
ual effort to ensure correct relations have been identi-
fied. One way to address this issue is for competing
techniques to vote and reach consensus [8]. Research
addressing the maintenance aspect of the problem has
been less extensive. Spanoudakis et al. [19] describe
rules based on information retrieval for the automated
creation and subsequent maintenance of traceability re-
lations. Cleland-Huang et al. [5] describe an approach
for maintenance which informs the owner of artifacts
about relevant changes to requirements so they can
take action. Related work is discussed in Section 6.

The approach described in this paper focuses exclu-
sively on the maintenance of traceability relations dur-
ing the evolution and refinement of structural UML
models. The initial creation of the traceability rela-



tions between these artifacts could be established man-
ually or automatically. Whichever way, the approach
is concerned with sustaining the investment that has
been made in creating the initial set. The approach
revolves around the monitoring of elementary changes
that take place to UML model elements within a CASE
tool and the generation of change events based upon
these, using a set of rules to help recognize these events
as constituent parts of intentional development activi-
ties. This is in recognition that the process of refining
an analysis model towards a final design model, and
any evolution of these models resulting from chang-
ing requirements, comprises a number of recurring de-
velopment activities. Once these activities have been
identified, traceability relations related to the changing
model elements can be updated automatically.

The remainder of the paper is structured as follows.
In Section 2, we present an overview of our approach.
In Section 3, we discuss the rules used to maintain
traceability relations. In Section 4, we describe the
prototype developed to implement our approach. In
Section 5, we present the results of two experiments to
provide preliminary validation. In Section 6, we give
an account of related work and discuss the contribu-
tion of our work. Finally in Section 7, we highlight
outstanding issues that are the subject of future work.

2 Approach

For traceability to realize its promise of development
task support, it is necessary to have an accurate set of
traceability relations for a project. Due to the rela-
tively low precision of the candidate relations gener-
ated by automated techniques, and the manual inter-
vention often required to prune these, it is not viable
to regenerate traceability relations automatically every
time either a change is made or they need to be used.
The ultimate vision would be the ability to establish
and maintain traceability relations concurrently with
development activities in an automated manner so they
are always ready to use.

Our work supports part of this vision by focusing
on maintaining traceability as a by-product of changes
made to structural UML models during object-oriented
software development. An assumption of our approach
is that development activities that are part of this pro-
cess are undertaken within a Computer Aided Software
Engineering (CASE) tool. We focus on structural UML
models and in maintaining post-requirements traceabil-
ity [11] as this a common scenario in industry. Our ap-
proach also assumes the pre-existence of an initial set
of traceability relations established between the mod-
els. Given these preconditions, we support the follow-

ing scenarios: (i) the change of a model within the same
level of abstraction (e.g., evolving the analysis model),
typically to align the model as a result of changing or
new requirements; and (ii) the change of a model into
a more detailed level of abstraction (e.g., refining the
analysis model into the design model), typically to ex-
plore requirements realization.
Our approach consists of three stages:

1. capturing changes to model elements and generat-
ing elementary change events (Section 2.1);

2. recognizing the wider development activity applied
to the model element, as comprised several elemen-
tary change events (Section 2.2); and

3. updating the traceability relations associated with
the changed model element to maintain accuracy
of the set (Section 2.3).

Figure 1 illustrates these stages using an example
that replaces an unspecified association in a UML de-
sign model with two unidirectional associations. This
activity is undertaken as most programming languages
are not able to implement bidirectional associations [4],
so is done for requirements realization (scenario (ii)
above). The resulting two associations are semantically
equivalent to the preceding single association, mean-
ing that all original traceability relations should be re-
established at both resulting elements. Stage 1 on the
right hand side of Figure 1 shows a flow of elementary
change events: deleting an unspecified association be-
tween class Order and class Customer, creating a uni-
directional association between class Order and class
Customer and creating a unidirectional association be-
tween class Customer and class Order. These changes
allow for recognizing the refinement development ac-
tivity shown in stage 2. This triggers the update of the
existing and single traceability relation by copying it
to the resulting two elements in stage 3.

2.1 Capturing elementary change events

Some CASE tools allow the capture of changes to
UML models as change events. For our approach, we
focus on the UML classifiers and relations that estab-
lish the structure of the system as model elements of
interest: class, component, package, attribute, method,
association, dependency, inheritance and stereotypes of
these (e.g., aggregation, composition, association class
and interface). We distinguish three types of change to
these elements: add, delete and modify.

We also maintain information about the properties
of those model elements that the changes are applied
to (e.g., name and identifier). For the addition of an el-
ement, these properties only exist after the creation of
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Figure 1. Stages of the approach as visualized by the example of refining an association

the element, and for deletion they only exist before de-
struction. For the modification of an element, both pre
and post modification properties are required for anal-
ysis. We define four elementary change events: ADD,
DEL, preMOD and postMOD. Stage 1 of our approach
captures the change type applied to a model element
and generates the corresponding change event(s) with
all the necessary properties of the changed element.

2.2 Recognizing development activities

It is not possible to maintain traceability relations
by only examining elementary change events. Stage 2
of our approach has to recognize the overarching de-
velopment activity that is realized by a collection of
elementary change events. We therefore search for pre-
defined patterns within a flow of change events while
working with a CASE tool. These correspond to the
constituent steps of development activities that can be
carried out while changing a UML model. The task
of recognizing these involves challenges that are han-
dled by the approach. (a) Several elementary change
events can relate to one activity. The type of a change
and the impacted model element do not offer enough
information to relate changes to each other. It is neces-
sary to compare additional properties. For the exam-
ple of Figure 1, the replacing associations have to be
directed, in opposite directions and between the same
classes as the original. (b) The same development ac-
tivity can be achieved by different elementary changes.
For Figure 1, rather than deleting the unspecified asso-
ciation and adding two new unidirectional associations,
it could be modified to a directed association. (c¢) The
same development activity can be achieved by the same
elementary changes in different sequences. For Figure
1, the replacing unidirectional associations could be es-
tablished before the deletion of the existing association.

2.3 Maintaining traceability relations

Stage 3 of our approach brings the set of traceabil-
ity relations back into an accurate state by performing
traceability updates related to the development activ-
ity undertaken. During the recognition of development
activities, we are careful to pinpoint those changes that
are purely atomic (i.e., the addition of a totally new
element, the deletion of an element, or simple modifi-
cation that does not destroy, enhance or move an ele-
ment). To differentiate these from wider activities in
which they may play a role, we assume that a developer
will complete a composite activity within a number of
elementary changes and so introduce the concept of de-
lay. This is discussed in more detail in Section 3.4.

If an element is deleted, it can mean that this part
of the model is not needed anymore, in which case it
is necessary to delete the associated traceability rela-
tion(s). The developer will be prompted to confirm
this action and the previous state will be versioned.
It is equally possible that this deletion is part of a
wider activity resulting in new elements. In this case,
it would be necessary to transfer the traceability re-
lation(s) from the original element to the resulting el-
ement(s) to keep the traceability set accurate. Like-
wise, if an addition cannot be related to any meaning-
ful wider activity, the enhancement of the model by a
new element is assumed. The element is highlighted
and tagged because human input is still required when
elements are originated. If a wider activity has been
recognized and the impacted element was related by
traceability relations, these relations can be maintained
after the completion of the activity. For elements that
evolve as part of a development activity, we maintain
the traceability relations in two ways. First, all discon-
nected relations of an evolving element will be recon-
nected to the evolved element or composite of elements
after the change. Second, if during the modification of
an element its replacement or one of its enhancements
becomes part of a new parent element, the developer



has the option to move or copy each of the traceability
relations on the old parent to the mew parent.

To support change propagation, we distinguish the
traceability relations of an element into two groups, in-
coming relations from dependent elements and outgo-
ing relations to independent elements. To minimize the
manual effort, we propagate change only to dependent
elements, because we assume a change to a dependent
element will not impact the independent one (forward
engineering). For example, if a design class is being
modified, the change would be propagated to depen-
dent test cases validating the class, but not to the inde-
pendent requirements defining the class. When change
is propagated, all traceability relations of a changing
element incoming from dependent objects receive the
status suspect and are tagged with the description of
the recognized change. By this mechanism, we propa-
gate change to all dependent elements and their mod-
els, and give support to manually resolve a possible in-
consistency. If the dependent object belongs to a model
we support (currently only structural UML models) our
approach can also maintain the traceability relations of
the dependent element while resolving this.

3 Traceability maintenance rules

The approach is built upon rules that allow for the
recognition of development activities within a flow of
elementary change events. These rules provide a direc-
tive to update traceability relations in predefined ways.
In this section, the definition of these rules, their rep-
resentation and their application is presented.

3.1 Rule definition

The viability of our approach depends upon the abil-
ity to catalog and capture all developmental activities
that have traceability implications for the artifacts we
handle. The activities we focus upon are those that
recur for most software development practices based
upon UML modeling, though obviously depend upon
the particular process used, the capabilities of the tar-
get programming language and the intended domain.

To catalog representative development activities, we
studied several methodologies as well as practice on in-
dustrial projects and collected traceability relevant ac-
tivities that typically occur during the analysis and de-
sign of systems or due to later changes. Forward en-
gineering processes we consulted included the Unified
Process [13] and we support the development activi-
ties that Arlow suggests for refining an analysis model
into a design model [4]. Also, we consulted Fusion [7],
Quasar [18], the V-Model [17] and Refactoring [10]. We

obtained a list of 38 development activities with impact
on traceability (12 apply to associations, 6 to inheri-
tance, 3 to attributes, 1 to methods, 6 to classes, 5 to
components and 5 to packages). Development activi-
ties that apply to relations include: refining an unspec-
ified association into one or two directed associations
(as per Figure 1); refining an association to aggregation
or composition; resolving one to many associations; re-
solving many to many associations; and resolving as-
sociation classes. Development activities that apply to
classifiers include: moving an attribute, method, class
or package; splitting a class, component or package;
merging a class, component or package; converting a
class to a component; and converting an attribute to a
class (see Figure 4).

All the activities identified to date have been cap-
tured by 21 rules with 67 alternative ways of occurring.
Some are captured by more than one rule (e.g., moving
an attribute) and some are only traceability relevant if
the impacted model element is being deleted and a new
element created, instead of modifying the existent ele-
ment (e.g., refining association to aggregation).

3.2 Rule representation

Rules have been defined to recognize development
activities and are stored in the open XML format.
These capture all valid sequences of changes that could
comprise the activity as well as information about the
necessary update to traceability relations.

The syntax of a rule is given by a self-defined XML
Schema Definition (XSD). Each rule is focused on one
development activity performed on one type of model
element. The head of a rule consists of a distinct <Rule
ID>, a description of the development activity it is
able to recognize and the type of the model element
the activity focuses upon. The rule then consists of
one or more <Alternative> sections. These sections
reflect different sequences of change events to accom-
plish the same activity (see Sections 2.2 and 3.3). Each
alternative is composed of a <ChangeSequence> and a
<LinkUpdate>. The <ChangeSequence> section con-
sists of a definition of all expected elementary change
events to recognize the sequence. The <LinkUpdate>
section defines all source elements impacted by the ac-
tivity and all target elements that have been impacted,
created or modified during the activity and require up-
date of traceability relations (see Section 3.5).

3.3 Definition of change sequences

A special notation is used to define so-called event
masks that are compared with incoming change events



to recognize them. These masks are similar to an event,
but include enhanced options to compare event proper-
ties. Every event mask has a unique ID which is used to
reference properties of other events during mask defini-
tion. There is one special trigger event ID=“T" within
each sequence that allows the rule engine to recognize
the development activity (see also Section 3.4). The
remaining events are numbered starting with ID="1".
To be able to recognize several elementary changes as
one activity, it is necessary that the element is being
modified or deleted, so the trigger event reflects that
elementary change that is modifying or destroying the
impacted model element. Only an incoming trigger
event allows the recognition of a new development ac-
tivity. To find related change events belonging to one
activity, the properties of the trigger event will be com-
pared with those of the surrounding events.

3.4 Rule application

Figure 2 illustrates the rule application process. On
the arrival of a new change event, the rule engine per-
forms the following three tasks:

1. The event is put in an FventCache (a first in, first
out buffer for the last n incoming events). If full,
the oldest event will be deleted, along with its oc-
currence within all OpenRules (rules to which at
least the trigger event has been recognized, but
with events missing to complete it).

2. The event is assigned to all OpenRules with a miss-
ing event equivalent to the incoming event.

3. The RuleCatalog (predefined rules) is searched for
rules with TriggerEvents (one characteristic event
within each alternative sequence of change events)
matching the type and properties of the incom-
ing event. All matching rules are established as
new OpenRules and the FEventCache is searched
for matching events to complete the OpenRules.

If during task two or three an OpenRule is com-
pleted, its events will be deleted from all other Open-
Rules and will be disabled within the FventCache.
Subsequently, the predefined traceability update for
the elements defined within the rule is performed. This
action restores the traceability. For most of the devel-
opment activities, it is possible to do this in a fully au-
tomated manner. Where it is not, we show a dialogue
box within the CASE tool to let the developer choose
the correct alternative. Note that in rare situations one
event contributes simultaneously to many development
activities. This is being addressed in ongoing work.

To handle elementary change events that do not im-
pact traceability, as well as unfinished development ac-
tivities and the addition and deletion of elements that
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Figure 2. Rule application process

are not part of a wider development activity, the Fvent-
Cache has a configurable size. This mechanism reflects
the assumption that the developer would complete an
activity within a certain time frame. The development
activities we identified comprise a minimum of 2, a
maximum of 6 and an average of 3.54 events, so for
the evaluation in Section 5 we used a delay (Ewvent-
Cache size) of 30 events. This allows a developer to
undertake several activities in parallel while mitigating
the risk of recognizing activities incorrectly.

3.5 Update of traceability relations

After a development activity has been recognized
as completed, the traceability update incorporates two
parts: the update of the relations on the element itself
and the update of the relations on the parent object of
the element. If a user interaction is necessary during
the update, we provide a detailed description about
the recognized activity and the situation the user has
to resolve. In any other situation the update will be
carried out automatically in the background.

To update an element’s own relations, all links on
all update sources (defined within the rule) will be col-
lected and, if not already existent, re-established on all
update targets (defined within the rule). We could ex-
tract possible update sources and targets automatically
from the defined change sequence and save the defini-
tion of these, but we found it more convenient to be
able to customize the update for each rule alternative.

For the update of the relations on the parent of the
impacted element, we compare the parent of the source
with all parents of the targets. For any two different
parents, we let the developer decide which relations on
the source parent will be copied or moved to the update
target. These situations occur, for example, if a class
is being moved from one package to a different package
and these packages are related by different links.



3.6 Status of the rule set

We developed an initial set of rules for working with
structural UML elements based on the development ap-
proaches mentioned in Section 3.1. This set of rules has
been subject to test and now delivers good results, by
which we mean they are able to recognize the activities
of developers in our studies with high accuracy and per-
form the required traceability maintenance (see Section
5). The rule set provides for a good starting point and
extension is the subject of our ongoing investigations.

4 traceMaintainer prototype

To evaluate our approach, we have developed a pro-
totype. This has been implemented in Visual Studio
.Net and uses the Microsoft XML Parser. It supports
the following activities: (a) the analysis of a flow of ele-
mentary change events according to a set of predefined
rules it imports from an XML file; (b) the specifica-
tion of new rules; and (c) based on a match between
events and rules, it restores traceability. The proto-
type applies rules defined using XML according to our
XML Schema Definition (XSD). The use of open and
standardized techniques to define our rules ensure their
readability by humans as well as provide a simple and
small engine for their interpretation and the generation
of update directives for the traceability relations.
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Figure 3. Two possible tool usage scenarios
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managed by ToolNet

The prototype has been designed to be independent
of specific CASE tools (see Figure 3). The intention
is for it to be deployable with every UML-CASE tool
that allows for capturing the necessary change events
to model elements and that allows the manipulation of
traceability relations from outside the tool. It is only
necessary to write an adapter for each tool that is to be
connected to our prototype, so the prototype basically
augments the existing functionality. We have devel-
oped adapters to ARTiSAN Studio and to Sparx En-
terprise Architect. The main purpose of these adapters
is the generation of events and the collection of element
properties in order to provide the rule engine with stan-
dardized elementary change events (see Section 2.1).

The adapters are also used to allow the rule engine to
update traceability relations kept within the develop-
ment tool. Furthermore, it is possible to use the pro-
totype in heterogeneous settings of requirements and
software engineering tools. In these settings, the soft-
ware development tool is used to capture the neces-
sary change events. The directives for the necessary
traceability updates are sent to a different tool, like
EXTESSY ToolNet [9], that holds the traceability in-
formation. We developed an adapter to ToolNet and
use it to hold all our traceability relations even for
projects with model elements within only one tool. The
reason is its ability to link every element of a model.
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Figure 4 depicts a usage scenario for traceMain-
tainer. In the scenario, the analysis model of a car
order system has to be changed because of a change
request relating to a use case. Step 1 shows the initial
situation. The use case Create Order is realized by a
class Order. To show the link between both model ele-
ments, a traceability relation exists between them. The
class has an attribute audioSystem. The customer re-
quests a change of the use case Create Order to support
different audio system options during the creation of an
order. This change in the use case requires a structural
change to the system’s UML analysis model, which in



turn requires the maintenance of its traceability rela-
tions. The attribute audioSystem has to be converted
into a class. Step 2 to Step 5 show how the developer
could carry out the required change. A class New Class
is created and renamed AudioSystem. An association
between class Order and class AudioSystem is created.
As a last step, the original attribute audioSystem is
deleted. traceMaintainer recognizes the completion of
the development activity and shows the depicted di-
alogue before it updates the traceability relation that
has been impacted automatically. For this example,
update means copying the existing relation on class
Order to the new class AudioSystem as both classes
now fulfill the use case Create Order. Step 6 shows the
newly created traceability relation on class AudioSys-
tem. Within the scenario, only one way to convert the
attribute into a class has been discussed, though trace-
Maintainer can handle different ways to accomplish an
activity if pre-specified in its rule set.

5 Preliminary validation

We performed two experiments using the prototype
to explore the following research questions:

1. Is the approach capable of maintaining traceabil-
ity relations at a level of accuracy comparable to
manual maintenance during the evolution and re-
finement of UML models?

2. How much manual effort can be saved by using au-
tomated maintenance and how dependent is that
saving on the kind of modeling undertaken?

The goal of the first experiment was to evaluate the
completeness and correctness of a project’s set of trace-
ability relations after refining UML models. We used
the analysis models of two software systems. The first
was abstracted from a wiper control system for a car,
created for Volkswagen AG, and the second was a li-
brary management system developed by students of the
Technical University of Ilmenau. Sparx Enterprise Ar-
chitect was used as the CASE tool and the traceability
relations were managed by EXTESSY ToolNet.

The documentation for the wiper system included:
a document with 26 requirements statements related to
a UML analysis model; an initial UML analysis class
model composed of 21 classes, 35 attributes, 23 associ-
ations/generalizations and 28 methods; and an initial
set of 105 traceability relations. The documentation
for the library system included: a requirements model
with 21 use cases related to a UML analysis model;
an initial UML analysis class model with 17 classes,
20 attributes, 27 associations/generalizations and 18
methods; and an initial set of 59 traceability relations.

The models for both systems were given to two de-
velopers (not authors of this paper). Developer A had
4 years of industrial experience in model-based, object-
oriented software development and developer B had 2
years of experience. Both had university-level educa-
tion on the topic. The task for each developer was
to refine the analysis model of the system into a de-
sign model that could be implemented. Each devel-
oper spent 2 hours on the task and the status of the
traceability relations were maintained by traceMain-
tainer behind the scenes. After finishing the task, the
developers manually updated the traceability for the
just created design model to the requirements model,
in consultation with a version of the initial relations
between the requirements and analysis model. This
second task took 1 hour. Each developer undertook
this task for the wiper control system and then for the
library management system.

Table 1. Traceability relations after task exe-
cution in experiment 1

Number of links Pre- Re- tM
Dev | tM | DNtM | cision | call | wrong

Wiper
Dev A 147 | 149 140 0.94 | 095 | 0.16
Dev B 138 | 132 128 0.97 | 093 | 0.20
Library
Dev A 94 92 88 0.96 | 094 | 0.13
Dev B 98 99 96 0.97 | 0.98 | 0.70

The number of traceability relations existing after
the completion of the developers’ activities for each
system are depicted in Table 1 in column Dev. These
figures were compared with those provided automat-
ically by traceMaintainer in column tM. The num-
ber of correct relations in the tM set (i.e., those also
identified by the developer) are listed in the column
D N tM. Precision is a percentage measure for the
number of relations that have been correctly main-
tained by traceMaintainer in relation to all the re-
lations existing after the automated maintenance —
or: truePositives/(truePositives + falsePositives).
Recall is a percentage measure for the number of
relations that have been correctly maintained by
traceMaintainer in relation to all correct relations —
or: truePositives/(truePositives + falseNegatives).
Column tM wrong gives the percentage of missing or
wrong changes in relation to all the changes performed
by traceMaintainer. The figure of up to 20% was found
to be due to incorrect or missing rules, illustrating that
the rule set needs to be improved iteratively. From fur-
ther experiments, this set is now converging.



Although provisional, this provides encouraging ev-
idence about the ability of our approach to automate
the maintenance of traceability relations at accuracy
levels approaching that attained via manual effort.
Given that 50% of the task time was spent restoring
traceability, this is a considerable saving in effort. A set
of 32 rules applied to 7 different types of UML model
element were used during this experiment.

To answer our second research question in more de-
tail, we used one part of the refinement activities of
developer A on the library system. We analyzed the
changes the developer had applied to the model and
assembled them into a detailed flow of changes. We
then defined two possible paths of execution in terms
of elementary changes to accomplish the same overar-
ching development activities. These each have differing
impact on and requirements for the maintenance of the
associated traceability relations. To compare the man-
ual effort that can be saved by using traceMaintainer
it is necessary to examine these differences.

To explore the greatest differences, we defined and
executed the scenario in the most optimistic way with
the least impact on traceability and in the most pes-
simistic way with the maximum impact on traceabil-
ity. Table 2 gives some statistics on the elements and
traceability relations of the model for the scenario in-
dependent of the execution path.

Table 2. Number of elements and relations
within the model of experiment 2

Before scenario | After scenario

Count | Links | Count | Links
Classes 23 67 35 86
Associations 30 25 47 43
Attributes 63 0 66 0
Methods 27 0 27 0

After executing the scenario for the first time and
encountering similar results in terms of recall and pre-
cision as those in Table 1, we analyzed all the issues
and were able to adjust our rules accordingly. We were
then able to maintain the relations in the same way
they have been maintained manually by developer A.

Dependent on the execution path chosen, either 127
or 176 elementary change events occurred taking 65
and 82 minutes respectively to perform manually (see
Table 3). These changes belong to 35 and 49 traceabil-
ity relevant development activities respectively. The
surprising result was that the necessary time for the
manual maintenance of relations ranged from 62 to 116
minutes after the modeling period. The results show
how immense the effort required for manual traceabil-

ity maintenance actually is and how much it depends
on how a modeling activity is executed. A developer’s
design freedom is possibly lost with awareness of the
future work a development strategy choice is likely to
cost them. By using traceMaintainer within the same
scenario the developers’ time required for traceability
maintenance could be reduced by 71% to 84%. It con-
sists of user decisions on unclear link updates and ad-
ditional links created on new elements during design.
After seeing how much effort is necessary to keep
traceability in order even for a relatively small scenario,
one could question the necessity to maintain traceabil-
ity at all. To demonstrate what would have happened if
the developer had not maintained the traceability rela-
tions, we give the Recall and Precision metrics for both
paths of execution without traceability maintenance.
For the optimistic path, we computed 65% Recall and
91% Precision after all changes and no maintenance.
For the pessimistic path, we computed 39% Recall and
54% Precision. The metrics show that, independent
of the way a development scenario is undertaken, the
traceability relations within the model erode and main-
tenance is highly desirable for future viability and use.
The results from these experiments are preliminary
and there are threats to validity. Given a small set of
developers, their tracing activities may not be repre-
sentative of a wider population. They could have pro-
duced poor sets of relations which were not a suitable
baseline for comparison with those of the approach.
The researchers also discussed traceability with the de-
velopers to come to an agreement about traceable el-
ements and when to forge traceability relations, and
both traceMaintainer and the <LinkUpdate> section
of the rules were customized to reflect this agreement.

6 Related work

Spanoudakis et al. [19] present a rule-based ap-
proach for the automatic generation of traceability re-
lations between documents which specify requirement
statements and use cases (in structured natural lan-
guage) and analysis object models. Requirement-to-
object-model rules, and a technique based on infor-
mation retrieval, are used to establish traces. The
second kind of rule analyzes the relations between
requirements and object models to recognize intra-
requirements dependencies and establishes relations.
The approach requires the export of all supported arti-
facts into XML and the rules generate traceability rela-
tions for the exported state of the models. Due to the
use of information retrieval there is uncertainty within
the recognized relations and limited support for devel-
opers with false recognition. The approach, in its cur-



Table 3. Results of experiment 2

Changes | Activities | Modeling | Manual maintenance | traceMaintainer | Saved with tM
Optimistic execution 127 35 64,5 min 62,0 min 18,2 min 1%
Pessimistic execution 176 49 82,2 min 115,8 min 18,2 min 84%

rent form, does not appear to support the maintenance
of traceability relations following artifact evolution.

Cleland-Huang et al. [5] present an approach called
event-based traceability. The authors link require-
ments and other artifacts of the development process
through publish-subscribe relationships. Changes to
requirements are categorized by seven kinds and events
are raised according to kind. These events are pub-
lished to an event server that sends notifications about
change to subscribers of a changed requirement. The
notification contains information to support the update
process of the dependent artifacts to facilitate manual
maintenance. The approach also maintains traceabil-
ity between requirements after predefined changes to
requirements [6]. There are similarities between the
approach and that proposed in this paper. The au-
thors also capture changes to a model (requirements)
as events, their model contains one type of element
(requirement) with properties of interest, they identify
seven possible change activities to requirements and
they deal with compound change events by tracking
lower level tasks. The authors do not discuss how to
recognize the elementary change actions and how to
relate them to a compound activity in depth though.
For changes to complex models created using UML, the
recognition of change becomes crucial, as described and
more specifically addressed within this paper.

Olsson and Grundy [15] describe an approach in
which they extract key information from different arti-
facts (requirements specifications, use cases and tests)
into abstracted representational models. The developer
can then create explicit relations between the abstract
elements. Some implicit relations can be defined auto-
matically (e.g., consistently named users within differ-
ent artifacts). Through this mechanism, changes can
be propagated. Some changes can be resolved auto-
matically (e.g., changing the name of a user). For
others, developers are informed so they can take ap-
propriate action. In comparison to the work of Olsson
and Grundy, we also propagate the change of a traced
model element. Additionally, we are able to maintain
the traceability relations of evolving model elements
in some cases automatically and in others with limited
user interaction. In contrast, we do not need to extract
the data from the models first and provide the propa-
gated information about change within the model.

Traceability is also supported by many commercial

requirements management tools, enabling the tracing
of requirements to other artifacts in the software devel-
opment life cycle. One example, IBM’s RequisitePro,
allows developers to relate requirements kept within
the tool to other tools in the product suite, such as
Rational Software Modeler. While these tools support
UML explicitly, there is limited support for the auto-
mated creation or maintenance of traceability relations
at fine-grain levels. To integrate the approach of this
paper, it would be necessary to write a tool-specific
adapter to generate the necessary events, and to be
able to create and delete the traceability relations.

There are a number of ways to support a devel-
oper in terms of traceability maintenance, from guiding
them through a predefined set of permissible activities
that result in traceability to attempting to recognize
actions and their implications. Our approach is based
upon the latter strategy. The problem of developers do-
ing surprising and unanticipated things may result and
incur need for manual intervention, but we assume this
is more desirable than removing a developer’s freedom
to create. The main contribution of our approach is,
therefore, that it addresses the lack of effective support
for the automated maintenance of traceability relations
in UML-based development tools as a by-product of
work carried out within them. It uses a rule-based ap-
proach to do this based on the modeling of development
tasks. The motivation is unique in the desire to sustain
initial investment in a project’s traceability.

7 Conclusions and future work

In this paper, we have presented an approach that
supports the automatic maintenance of traceability re-
lations between requirements, analysis and design mod-
els of software systems expressed in UML. The ap-
proach analyses elementary change events generated
while working within a CASE tool. Within the cap-
tured flow, sequences of events are sought that corre-
spond to predefined rules. These rules represent vari-
ous ways in which recurring development activities can
be undertaken. Once a sequence has been recognized,
the corresponding rule gives directives to update im-
pacted traceability relations and, by these actions, re-
stores the set back to an accurate state. We achieved
encouraging results in two early experiments. Several
issues were recognized during the experiments which



have led to an improved version of the approach.

Limitations of the approach are that only predefined
activities can be recognized at present and these are un-
likely to reflect all possible development approaches, so
it might be necessary to customize the rules to project
specifics. Whereas there is an initial cost in identifying
development activities and formulating rules, the rule
set is proving reusable within this restricted scope of
UML-based object-oriented software engineering. It is
a future exercise to gain more statistical data on the
cost /benefit trade-off, costs in terms of initially defin-
ing the rules and benefits in terms of the time saved on
manual maintenance across all projects using the rules.

The findings from the initial experiments high-
lighted future directions for this work and are inform-
ing a planned industrial case study. More empirical
studies are needed to evaluate the effectiveness of the
rule matching. Addressing the situation where events
may participate in many rules simultaneously in an in-
terleaved manner is a research issue and it would be
desirable to extend the support to other kinds of de-
velopment model. The necessary preconditions would
be models with a limited number of discrete elements
and sufficient properties to be able to recognize mean-
ingful development activities. This requires a stronger
relation between traceMaintainer and the development
project’s traceability meta-model to be able to cus-
tomize the artifacts that can be related to each other.
There may also be some scope to support the defini-
tion of rules semi-automatically and to use the rules for
checking the consistency of change activities.

Preliminary results show that the approach de-
scribed in this paper is capable of reducing the effort
(and so cost) in maintaining traceability quite dramat-
ically and at a high level of precision. The approach
is intended as a complement to those approaches that
initially create a set of traceability relations using au-
tomated techniques. Further, given the attention that
a number of these automated techniques place on es-
tablishing traceability between design and code, the
approach can potentially fulfill an intermediary role in
sustaining the overall traceability picture.
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