Published in Proc. of the 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, Brazil
@INPROCEEDINGS{conf/re/RempelMK13, author = {Patrick Rempel and M{\"a}der, Patrick and Tobias Kuschke},

title = {An Empirical Study on Project-Specific Traceability Strategies},

booktitle = {Proc. of the 21st IEEE International Requirements Engineering Conference {(RE)}, Rio de Janeiro, Brazil}, year = {2013}}

An Empirical Study on Project-Specific Traceability
Strategies

Patrick Rempel, Patrick Méader, and Tobias Kuschke
Ilmenau Technical University
Department of Software Systems
Ilmenau, Germany
{patrick.rempel|patrick.maeder|tobias.kuschke} @tu-ilmenau.de

Abstract—Effective requirements traceability supports practi-
tioners in reaching higher project maturity and better product
quality. Researchers argue that effective traceability barely hap-
pens by chance or through ad-hoc efforts and that traceability
should be explicitly defined upfront. However, in a previous study
we found that practitioners rarely follow explicit traceability
strategies. We were interested in the reason for this discrepancy.
Are practitioners able to reach effective traceability without an
explicit definition? More specifically, how suitable is requirements
traceability that is not strategically planned in supporting a
project’s development process. Our interview study involved
practitioners from 17 companies. These practitioners were fa-
miliar with the development process, the existing traceability
and the goals of the project they reported about. For each
project, we first modeled a traceability strategy based on the
gathered information. Second, we examined and modeled the
applied software engineering processes of each project. Thereby,
we focused on executed tasks, involved actors, and pursued goals.
Finally, we analyzed the quality and suitability of a project’s
traceability strategy. We report common problems across the
analyzed traceability strategies and their possible causes. The
overall quality and mismatch of analyzed traceability suggests
that an upfront-defined traceability strategy is indeed required.
Furthermore, we show that the decision for or against traceability
relations between artifacts requires a detailed understanding of
the project’s engineering process and goals; emphasizing the need
for a goal-oriented procedure to assess existing and define new
traceability strategies.

Index Terms—requirements traceability; traceability strat-
egy; traceability strategy assessment, interview study; empirical
study; traceability usage goals; project-specific traceability;

I. INTRODUCTION

Effective requirements traceability supports practitioners in
reaching higher project maturity and better product quality.
Requirements traceability, defined as the ability to follow the
life of a requirement in both a backward and forward direction
[1] is a critical element of any rigorous software development
process. It provides support for numerous software engineering
tasks such as requirements validation, impact analysis, cover-
age analysis, compliance verification, and derivation analysis.

Researchers argue that effective traceability barely happens
by chance or through ad-hoc efforts and that traceability
should be explicitly defined upfront [2]. Such an explicit
traceability strategy should at least define the artifacts to be
traced and the traces to be created among them. These simple
requirements conceal complex decisions as to the granularity,
categorization, and storage of assorted multi-media artifacts

[2]. However, in a previous study we found that practitioners
rarely follow explicit traceability strategies [3]. Accordingly,
we were interested in the reason for this discrepancy. Are prac-
titioners able to reach effective traceability without an explicit
definition? More specifically, how suitable is requirements
traceability that is not strategically planned in supporting a
projects development process.

We followed a qualitative research approach to answer our
questions. Our interview study involved practitioners from
17 companies. These practitioners were familiar with the
development process, the existing traceability and the goals
of the project they reported about. For each project, we
first modeled a traceability strategy based on the gathered
information. Second, we examined and modeled the applied
software engineering processes of each project. Thereby, we
focused on executed tasks, involved actors, and pursued goals.
Finally, we analyzed the quality and suitability of a projects
traceability strategy. We report common problems across the
analyzed traceability strategies and their possible causes.

Our paper is organized as follows. Section II reviews related
work in the area of requirements traceability. In Section III we
outline our research motivation and derive research questions.
These questions were used to plan and conduct the interview
study described in Section IV. In Section V we describe the
analysis procedure step by step and include detailed results
from one case. In Section VI we show and discuss results for
all cases. Section VII discusses possible threats to the validity
of our work and how we mitigated them. Finally, Section VIII
concludes our work and outlines future research directions.

II. RELATED WORK

In 1994, Gotel and Finkelstein [1] conducted an extensive
study on the so-called traceability problem. The study involved
around one hundred software development practitioners, hold-
ing a variety of positions within a large organization, with
experience ranging between 0.75 and 30 years on a variety of
project types. They identified various reasons for that problem,
such as lack of training and guidance in traceability practice,
failure to follow standard practices, undefined traceability
roles, lack of coordination and cooperation between people
responsible for different artifacts, and inadequate information
about how people contributed to traceability data. Arkley and
Riddle [4] identified a lack of motivation for requirements

patrickr
Rectangle

patrickr
Typewriter
Published in Proc. of the 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, Brazil

patrickr
Typewriter
@INPROCEEDINGS{conf/re/RempelMK13, author = {Patrick Rempel and M{\"a}der, Patrick and Tobias Kuschke},
title = {An Empirical Study on Project-Specific Traceability Strategies},
booktitle = {Proc. of the 21st IEEE International Requirements Engineering Conference {(RE)}, Rio de Janeiro, Brazil}, year = {2013}}

traceability due to the absence of direct benefits; and a lack of
understanding for how to employ traceability. Several studies
investigated the negative impact of inadequate traceability on
software development. Researchers found that wrong gran-
ularity can lead to over-complex or inadequate traceability
graphs, and thereby leads to project over-runs or software
failures [3], [5]. Ramesh et al. emphasized on the high costs
of creating and maintaining traceability, which can only be
compensated by higher quality and reduced overall costs if
traceability is applied purposefully [6]. Capturing software
development activities to automatically generate traces may
reduce trace capturing effort [7]. Though, neglecting traceabil-
ity completely or capturing traces in an unstructured manner
to reduce costs will lead to reduced system quality, expensive
iterations of defect corrections, and increased project costs [8],
[9].

Several authors conducted empirical research on require-
ments traceability and argue the need for planned traceability
and defined traceability strategies. Gotel and Finkelstein argue
that knowledge about stakeholders that contributed to traced
artifacts helps improving traceability [10]. Ramesh [11] iden-
tified two general groups of traceability users, which he refers
to as low-end and high-end traceability users. While low-
ends users rely on simple dependencies among requirements,
high-end users leverage much more sophisticated traceability
schemes. Ramesh and Jarke [12] conducted a large practi-
tioner and tool study on traceability. They pointed out that
traceability links should be strongly typed in order to avoid
semantic misinterpretations. As a result, the authors proposed
a traceability meta-model and reference models as guidance
for practitioners. We advocated the use of a traceability infor-
mation model as a necessary condition to employ traceability
[13]. Arkley and Riddle [14] conducted a case study on a soft-
ware project, which successfully leveraged traceability. They
concluded that the success of the observed traceability system
was mainly influenced by two facts: (i) general traceability
needs were examined to support project participants in their
tasks (ii) the traceability information model was systematically
tailored to the identified needs.

Domges and Pohl [9] propose a more holistic approach
to employ project-specific traceability. Rather than reducing
traceability to the definition of permitted artifacts and link
types, the definition of project-specific trace strategies is
advocated. Thereby, trace capture and usage strategies define
what data should be captured and used, in which situation,
by whom, and how. Additionally, the authors developed
the framework PRIME-RT [15], which provides integrated
traceability guidance by automatically reminding, enforcing,
and controlling a project-specific traceability strategy. The
authors reported that the application of this framework in
prototypical experiments lead to better traceability and higher
product quality. Though, PRIME-RT supports the application
of traceability strategies, the authors did not discuss what is
required to define an adequate traceability strategy, which in
turn is a necessary to successfully employ the strategy.

In a recent publication [16], we reported on traceability

problems that were observed by members of the U.S. Food
and Drug Administration (FDA) who systematically evaluate
traceability documentation for FDA medical device approval
as their daily business. It turned out to be a major problem
in current traceability practice that the definition of project
specific traceability strategies is either lacking or inappropriate
for the investigated project.

III. RESEARCH MOTIVATION AND QUESTION

As outlined in Section II, different traceability problems
are well studied and empirically grounded. Extensive research
effort was taken to address the various facets of the trace-
ability problem. Beyond that, commercial CASE tool vendors
improved tool support for traceability. However, even most
recent studies from the field of traceability practice report
about practitioners having problems with properly defining and
employing project specific traceability [3], [16].

Given this discrepancy, we decided to conduct an in-
depth study on applied traceability strategies in practice. Our
research was motivated by the following research questions:
RQ-1 What traceability strategy do practitioners apply in
their development project and is this strategy explic-
itly defined?

Do practitioners create usable traceability?
Do practical applied traceability strategies support
all project-specific traceability needs?

RQ-2
RQ-3

The traceability strategy concept is rather abstract. Thus,
we decomposed it into concrete traceability concepts, namely,
traces between artifacts (what), necessary operations to capture
and use traces (how), reasons for leveraging traces (why),
and the involved people (who). We derived the following sub-
research questions from RQ-1:

RQ-1.1 What traces between which artifacts do practitioners
capture?

RQ-1.2 Who is using these traces?

RQ-1.3 How do they use traces?

RQ-1.4 Why do practitioners use particular traces?

IV. StUDY

We applied a qualitative research method for answering our
research questions. We choose that method for the following
reasons: first, defining a traceability strategy is a complex
and multi-faceted challenge. Thus, it would be difficult to
define specific context variables. Second, with the chosen
approach we were closer to the studied software projects
and its participants. So, we gained an understanding of the
mechanics behind the observed phenomena and avoided mis-
interpretations during the analysis.

Another benefit of qualitative research is that it generates
rich data that can answer slightly varying research interests
in parallel. We used that possibility and gathered data for
our main research questions discussed in this paper. We also
conducted a small study on inter-organizational traceability
[17]. We used different questionnaires for both studies, gen-
erating the required data per topic. Both studies involved the

same cases. Participants were not informed about our varying
research interests in order to avoid bias.

A. Sampling Cases

We assembled a list of potential companies from the mem-
bership list of the association of friends of the Technical
University Ilmenau. This list was extended by contacts we
made at a practitioners forum on requirements engineering. We
considered every company in the resulting list of 85 companies
as a potential case for our study. In order to prioritize this
list, we collected general information about each company
and identified contact persons from the internet. We then
developed a case sampling strategy in order to select the most
suitable companies and informants for our study. Following
the framework of Curtis et al. [18], we defined and used the
following sampling criteria:

« How relevant are general case characteristics?

« What is the case potential to generate rich information?

o How generalizable are findings from this particular case?

o What resources are required to study this case?

o Does any ethical issues force us to exclude this case?

After prioritizing the list of potential cases, the contact
persons of highest prioritized cases were contacted in order
to arrange an interview. Provided that the sampled company
agreed, we conducted either one or multiple interviews with
key informants who are familiar with the company’s software
development process and its traceability practice. Every in-
formant was interviewed in an individual interview session to
avoid influences between informants.

B. Data Collection

We decided to interview the practitioners face-to-face within
their natural working environment. To understand practi-
tioner’s perceptions, we especially considered contextual and
relational information as important. With every single infor-
mant, we conducted an in-depth interview lasting for three to
six hours. Additionally, we decided to employ semi-structured
interviewing to guarantee that our investigations were guided
by our research questions, while keeping the flexibility to react
on unforeseen informants responses and to explore unexpected
phenomena. Our questionnaire consisted three parts:

1) General information about informant and working en-
vironment: we collected background information about
the informant and his or her working environment as
outlined in Table I. We asked the informant to focus on a
particular software development project for the remaining
part of the interview. We requested that the selected
project was representative for the company’s software de-
velopment practice and that she/he was currently involved
in it or had recently finished that project (more details on
validity in Section VII).

2) Application of requirements traceability: we asked
the informant about the reasons for applying require-
ments traceability in her/his concrete project. We col-
lected detailed information on how and why every single
project participant used traceability. For this purpose, we

recorded all relevant aspects of each traceability usage
scenario, such as actors, trace paths, artifacts, tools, tasks,
and intention.

3) Software development process: we asked for important
software process elements in the reported project, such
as activities, tasks, actors, stakeholders, goals, artifacts,
and tools. Thereby, we aimed to get a holistic view on
the software process from beginning to the end.

To ensure focused and high quality results, we conducted
a pilot interview before running the actually study. Therefore,
we selected a company in close proximity and conducted a
three hours lasting interview. In result, we produced interview
minutes and field notes. We analyzed the interview minutes
in order to reveal and eliminate conceptual weaknesses from
the questionnaire. We further conducted a retrospective review
of our field notes to improve our interview tactics. Thereby,
we realized the necessity to approach certain topics differently
in order to avoid unwittingly influencing the informant. The
actual interviews were then conducted with 20 informants
from 17 different companies. All interviews were recorded
in writing by a designated minute taker.

C. Data Demographics

In our study, a case refers to a single software development
project in a distinct company (see Table I). Similar to our pre-
vious study on traceability practices [3], we observed different
key drivers, why traceability is applied in software projects.
Informants in six cases reported that they are obligated to
provide traceability by regulations. Further eight cases stated
that their customer explicitly demand for traceability. The
remaining three cases stated that traceability is used on a
voluntary basis by enthusiasts to improve product quality.

Our study contains small projects (less than 5 project partic-
ipants), medium projects (5 to 10 project participants), large
projects (10 to 100 project participants), and huge projects
(more than 100 project participants). These projects were run
by small (less than 100 employees), medium (100 to 1,000
employees), large (1,001 to 10,000 employees), and huge
(more than 10,000 employees) companies. While small and
medium companies mainly run small projects, large and huge
companies mainly run large and huge projects.

The studied companies are active in various domains
(Avionic, Finance, Insurance, Logistics, Retail, E-Commerce,
Security, and Transportation) and produce different offerings
(Software Product, Hardware Product, Software Development
Services). The majority of informants were either mid-level
professionals (5 to 10 years of work experience) or senior-
level professionals (more than 10 years of work experience).
Only one interviewed informant was a entry-level professional
(practitioner with less than 5 years of work experience). To
mitigate the risk of gathering imprecise information from
inexperienced informants, we never interviewed solely entry-
level professionals for one particular case.

D. Data Analysis

We analyzed the interview results in a two phase process.

TABLE I
CHARACTERISTICS OF INTERVIEWED INFORMANTS, THEIR PROJECTS, AND COMPANIES

Traceability | Project Company | Case Domain Offering | Informant Informant’s Informant’s
Driver Members | Employees ID ID Role Experience [yr]
5.9 > 10,000 10 Insurance Service 10.1 Process Manager 10.-20
’ 10.2 Release Manager 5..10
1,001..10,000| 9 IT Security SW Product 9.1 Development Lead 10..20
Regulations | 10..100 > 10, 000 14 Avionic HW Product 14.1 Tester 10..20
< 100 16 | Requirements Tool | SW Product 16.1 Development Lead 10..20
> 100 1,001..10,000| 3 Finance Service 3.1 Project Manager 10..20
100..1, 000 17 | Telecommunication | HW Product 17.1 Process Manager 10..20
<5 < 100 Robotic HW Product 6.1 Development Lead 5..10
100..1, 000 8 Finance SW Product 8.1 Project Manager > 20
< 100 2 Insurance Service 2.1 Project Manager 10..20
100..1. 000 7 Finance Service 7.1 Specification Manager 5..10
Customer 5.9 ’ 13 Finance Service 13.1 Compliance Manager > 20
. . 12.1 Portfolio Manager 5..10
> 10,000 12 Retail Service 122 Test Manager 1020
> 100 100..1, 000 5 E-Commerce SW Product 5.1 Development Head 10..20
> 10,000 15 Logistic Service 15.1 Business Analyst > 20
1 Public Service Service L1 Peveloper <5
Enthusiasm <5 < 100 . 1.2 Project Manager 10..20
4 Retail SW Product 4.1 Development Lead 5..10
5.9 < 100 11 Insurance Service 11.1 Development Lead 10..20

First, we applied qualitative content analysis [19] to sys-
tematically extract relevant data from the interview minutes.
Our research questions (see Section III) and the interview
questionnaire served as qualitative description model. From
this model, we derived a system of codes for all three interview
parts. These codes were used to classify all written interview
minutes and field notes with the qualitative analysis tool'.

Second, we applied a traceability strategy assessment proce-
dure, which we also derived from our research questions (see
Figure 1):

Step 1 Identify and assess existing trace paths [RQ-1.1]: we
used traceable artifacts and traces and recovered a
conceptual traceability information model per project
(what). This conceptual traceability model and the
defined trace paths were then assessed for ambiguity,
ephemerality, and redundancy.

Identify traceability usage goals [RQ-1.2, RQ-1.3, RQ-
1.4]: we used information about the purposes of trace-
ability per project and derived a conceptual goal model
of traceability usage (who, why, how).

Analyze the existing software development process:
we used activities, tasks, actors, stakeholders, goals,
artifacts and derived a conceptual goal model of the
software process.

Assess suitability of traceability usage goals [RQ-
2, RQ-3]: we assessed the derived traceability usage

Step 2

Step 3

Step 4

'MAXQDAI10 — http://www.maxqda.com

goals against the derived software process goals and
examined whether or not all software process goals
of all involved actors were adequately addressed by
traceability usage goals. We identified missing and su-
perfluous traceability goals and derived an appropriate
traceability usage goal model.

Assess suitability of existing trace paths [RQ-2, RQ-
3]: we assessed the recovered traceability information
model against the appropriate traceability usage goal
model (Step 4) for suitability. We identified missing
and superfluous traces.

Step 5

V. ASSESSMENT PROCEDURE AND ILLUSTRATING
EXAMPLE

In this section we demonstrate the application of our assess-
ment procedure. We randomly selected Case 5 and use it as
a running example and a detailed explanation of our analysis
procedure within this section. The remaining cases were ana-
lyzed and assessed following the same procedure. Discovered
results and derived findings are discussed in Section VI.

1) Step 1: Identify and Assess Existing Trace Paths: Due to
the fact that only a single project of our study had explicitly
defined a traceability information model, we had to detect
traceable artifacts and traces between those artifacts in the
interview minutes, and derived a conceptual traceability infor-
mation model. Figure 2 outlines the conceptual traceability
information model of Case 5. In Case 5, Feature Wishes
from different stakeholders are collected through different

p
Step 1 - Identify and assess
existing trace paths [RQ-1.1]

(Identify traceable artifacts

p
=) Step 5 - Assess suitability of
(Idennfv trace paths) - existing trace paths [RQ-2, RQ-3]
Develop conceptual traceability . Assess traceability information
information model Conceptual model against traceability
""" Traceability = *==1 | usage goals
Assess conceptual traceability Informati o\r/\ 9¢ 9!
information model Model (Detect missing trace paths)
(Detect ambiguous artifacts)
(Detect superfluous trace paths j
(Detect volatile traces)
., ~ J
(Detect trace path duplicates) . *
N / s N
* Step 4 - Assess suitability of
Conceptual traceability usage goals
Step 2 — Identify traceability usage
Goal Model of RQ-2, RQ-3
goals [RQ-1.2, 1.3, -1.4] weee Traceabilty - [RQ-2, RQ-3]
(Identify traceability usage goals) Usage Assess traceability usage goals
against software process goals
(Develop conceptual goal model j
of traceability usage (Detect missing traceability goals)
Detect superfluous traceability
Step 3- Analyze the existing .-\ goals
software developement process _)
- - C tual
(Identlfy actors in software Goglnlt:gdglaof A
development process
==== the Software

(Gather goals and tasks of actors) Process

Derive conceptual goal model of
the software process)

Fig. 1. Derived traceability strategy assement procedure

input channels such as business partners, customers, system
integrators, platform hosters, and competitor analysis. These
wishes are then consolidated into Feature Requests. For every
software release iteration, the development head creates a
Release Plan that specifies what features are going to be
implemented within a Release. Also, the Release contains a
detailed break-down structure of work packages and related
tasks. Tasks are linked to produce results of every task.

Based on a previous study on traceability problems [16]
that were observed by members of the U.S. Food and Drug
Administration (FDA) who systematically evaluate traceability
documentation for FDA medical device approval as their daily
business, we defined the following problem categories and
corresponding assessment methods to systematically evaluate
the conceptual traceability information model.

a) Artifact Ambiguity Problem: A traced artifact cannot
uniquely be identified within the pool of all existing artifacts.
Assessment: Assess whether or not each artifact is identified
by a unique ID. Result: Artifacts are classified as ambiguous or
non-ambiguous. Example: In Case 5, structural design models
are specified as Wiki pages. Structural design artifacts such
as model, component, and class are not uniquely named nor
do they have unique identifier within the Wiki page. Thus, the
artifacts Structural Design and Behavioral Design are defined
as ambiguous artifacts (see Problem #1 in Figure 2).

b) Trace Path Ephemerality Problem: The long-term
existence of a traceability path cannot be ensured. Assessment:
Assess whether or not all traced artifacts and traces are
persistently stored. Result: Traces are classified as persistent
or volatile. Example: In Case 5, the head of development
regularly creates a Release Plan within a dedicated project
management tool. Then, he manually transfers that Release

Plan into the process centered application life-cycle manage-
ment (ALM) tool in which it becomes a Release artifact.
Though, implicit traces through identical naming are existing,
these traces cannot be actively retrieved and used. Thus, we
consider the trace between the Release Plan of the project
management tool and the Release definition within the process
ALM tool as volatile (see Problem #2 in Figure 2).

c) Trace Path Redundancy Problem: Redundant trace-
ability paths are defined. Assessment: Search for alternative
trace paths connecting the same two artifacts in the traceability
information model and having the same semantics. Result: A
set of redundant traceability paths that should be eliminated
from the traceability information model. Example: This prob-
lem was not present in Case 5.

A. Step 2: Identify Traceability Usage Goals

We extracted the following information from our interview
minutes: who is using the traces of the conceptual traceability
information model [RQ-1.2], why is she or he using those
traces [RQ-1.4], and how is she or he using those traces [RQO-
1.3]. As a result of this analysis, we identified a conceptual
goal model of traceability usage per case. For Case 5 this
model is shown in Figure 3.

B. Step 3: Analyze the Existing Development Process

While the current traceability strategy of a project was
analyzed as described in the two previous steps, these steps
did not provide information about the appropriateness of the
traceability strategy [RQ-2] nor whether or not all project-
specific traceability needs were satisfied for a project [RQ-3].
A necessary condition for addressing these research questions
is that all traceability needs within a project are understood
and formalized. To achieve that, we analyzed per project the
software development process from the beginning to the end.
We extracted a goal model for each software process that
contains all process tasks as well as the corresponding goals
of every actor. For Case 5 this model is shown in Figure 4.

C. Step 4: Assess Suitability of Traceability Usage Goals

We assessed the goal model of traceability usage against the
goal model of the software process [RQ-2 and RQ-3]. Ideally,
every process task that requires the usage of traceability
should be addressed by at least one traceability usage goal. In
result, two types of problems could emerge. First, a software
process task that requires traceability usage is not covered by
a traceability usage goal. Second, a process task that requires
traceability usage is covered by too many usage goals, and
thus, unnecessary effort for capturing traceability is generated.

d) Usage Goal Suitability Problem: A software process
task that requires traceability usage is not covered by a
traceability usage goal or vice versa. Assessment: Search for
software process tasks that require traceability usage and are
not covered by any goal within the conceptual goal model
of traceability usage or vice versa. Example: The solution
architect in Case 5 is responsible for verifying whether or
not the design is meeting the requirements specification.

Feature Wish

Work Package

Problem: #4

| Problem: #1
—

ReleasePlan (— — — — — — T T T T T T T T T T

Feature . Implementation L
Candidate Design Task Verification Task
*—— o
-———_— |
. . Legend
| o oY | Automated Automated 8
:eaturet r | | Behavioral Structural | Source Code Test Pro.cedure Test Procedure Persistent Trace
eques! | Design Design (Functional) (Performance) —
| Volatile Trace
|

Release

@
Test Report Test Report Test Protocol Strong Artifact
(Functional) (Performance) (Functional) D
P Py o—o
——@ ’
4 Weak Artifact

Test Script
(Functional)

[o

Defect

Fig. 2. Recovered conceptual traceability information model for Case 5

Design engineer

Requirement
rationale to be
understood

Design weaknesses in
feature to be identified

(Req:gebfge""-") __ | problem: #3 hl

Solution architect

%

Defect hot
spots to be
identified

$ Developer
Build quality to
be assessed

Design weaknesses
in component to
be identified

Defect root
cause to be
identified

Project manager
3 .,
Legend

Release

- management to Defect hot spots Goal

K be improved to be identified
Effort estimation
to be improved Task

Defect resolution
to be scheduled
appropriately

Resource
planning to be
improved

Contribution

Decomposition

—+

Fig. 3. Derived traceability usage goal model for Case 5

Therefore, she or he must understand the rationale of re-
lated requirements, which can be achieved by tracing back
from Feature Request to related Feature Wishes. However,
the project’s traceability strategy did not contain a usage
goal "Requirements to be understood”. This usage goal is
missing in the conceptual goal model of traceability usage
(see Problem #3 in Figures 3 and 4).

D. Step 5: Assess Suitability of Existing Trace Paths

We assessed the conceptual traceability information model
against an ideal goal model containing all of traceability
usage. This ideal usage goal model was derived based on each
project’s development process in the previous step. Each task
in this usage goal model requires the existence of one or more
particular trace paths that may or may not be present in the
project. Accordingly, we identified the following problem and
applied the related assessment method.

e) Trace Path Suitability Problem: A specific trace path
is missing and prevents the execution of a required traceability
usage task and the achievement of the related traceability
usage goal. Alternatively, a traceability path is superfluous,
because none of the identified traceability usage goals requires
its existence. Assessment: Search for traceability usage tasks
that require a specific trace path that is not defined within
the conceptual traceability information model. Additionally,

search for traceability paths that are not required by any trace-
ability usage goal. Example: The performance tester in Case
5 conduct performance tests on a regular basis by running the
Automated Test Procedure (Performance). Due to the missing
trace path between Automated Test Procedure (Performance)
and Feature Request, performance test results cannot be related
to explicit software performance requirements missing the
chance to support the tester with this difficult task (see
Problem #4 in Figure 2).

VI. RESULTS AND DISCUSSION

In this section, we report on the overall findings we ex-
tracted from our study. To generate the following data, we
analyzed the interview minutes from each case as exemplary
described in Section V. Table II summarizes the overall results
per problem category. Every problem category consists of one
or more classes.

A. Artifact Ambiguity Problem

We considered a traced artifact that cannot uniquely be
identified within the pool of all existing artifacts as ambiguous
artifact. The first row of Table II outlines the absolute and
relative occurrence of ambiguous artifacts per case.

Reasons: Artifact types were conceptually considered but
did not exist in digital form. We found especially artifacts

S Needs to be "
identified s

Recognize
market trends

Analyze competitors
(strengths & weaknesses)

Identify platform Identify Saa$
hoster needs provider needs i
Functional contradictions Impact to _-'-:
to be prevented be assessed 3
d i

Identify functional Resolve functional
contradictions contradictions

Break down needs by
functional classes

Createfupdate
functional
specification

% Project manager

Requirements effort
to be estimated
Release iteration
to be planned

Andh

Requrements
t0 be priortzed

Release iteration
to be managed

And

Define features
for release
iteration

Break down
requirements into
workpackages /
tasks

Assess effort
(estimated
vs. current)

Manage
defects

£ Design engineer | ..

Design Requirements
specification to to be
be created understood

% Selution architect

Technical contradictions
to be prevented

And,

Resolve technical
st
s Desion compliance Buid to be
= to be verffied released
Requirements / ndk
to be
understood
o, Assess functional
speciication

| Problem: #3 5

Assess technical
specification

X Test engineer

Create /
update test
cases

Design
speciication to
be understood

sAnd

Implementation
complance to be verfied

And

Assess
implementation

Implement
feature

Createfupdate
technical
specification

Feature to be
verfied

Xor,

Verfy feature
(manually)
A

\

Dafects to be
reported

And

Verify feature
(automaticall)

O

Performance
to be verified
0
Run performance Y i
test i

Createfupdate
test automation
‘toobox

P

Report defects

D

Track
progress

nd
Assign ressources to
tasks

Assess defect Plan / schedule
statistics

defect resolution
tasks

Execute
test

Create/update
performance test script

Write test
protocol
Regression to
be verfied
Xod

>/ 0\
Assess test < Raise defect >

report

Verffy regression
(manualy)
Verify regression
(automatically)

Fig. 4. Derived goal model for the software development process of Case 5

supporting pre-requirements traceability as being problematic.
Further, tools required to create or modify artifacts did not
provide sufficient support for the generation or storage of
unique artifact identifiers. Several years ago, Aizenbud-Reshef
et al. [20] referred to the insufficiency of software tools to
uniquely identify artifacts across time and space. The authors
predicted that future tools will create and maintain globally
unique identifiers for artifacts avoiding the ambiguity problem.
The results of our study show that their prediction cannot be
confirmed yet. Ascuncion et al. [21] observed similar issues
concerning the ambiguity problem in a recently conducted
industrial case study on end-to-end software traceability.

Complex environments with multiple monolithic tools were
lacking cross-tool mechanism to ensure uniqueness of artifact
identifiers across the entire platform.

Influence factor traceability driver: The more strict (Reg-
ulations) the traceability driver was, the higher was the per-
centage of non-ambiguous artifacts. Informants from strictly
regulated projects stated that traceability is a strategic project
goal. Budget for well suited traceability tools is available
in such projects. Projects with less strict traceability driver
(Enthusiasm) reported that existing tools must be used no

matter how viable they are for traceability, often causing the
artifact ambiguity problem.

Influence factor project size: Large and huge projects tend
to have higher percentage of non-ambiguous artifacts. Due to
the economy of scale, expensive traceability tools can only be
funded by project budgets of large projects.

B. Trace Path Ephemerality Problem

We considered a trace path as volatile if the traces were
not persistently stored, and thus, the long-term existence and
usage of traces could not be ensured.

Reasons: We identified the following reasons, why volatile
trace paths existed in the conceptual traceability information
model. (i) Trace paths were not persistently stored. (ii) Trace
paths between artifacts of multiple tools were not stored in a
single repository. (iii) Trace paths were conceptually modeled,
but no real path created. (iv) Trace paths were defined between
artifacts where at least one related artifact was ambiguous.

Influence factor traceability driver: Contrary to our expecta-
tions, we found that cases with a more strict traceability driver
(Regulations) tend to have more volatile traces than cases with
a less strict traceability driver (Enthusiasm). Informants from

TABLE 11
APPEARANCE OF ASSESSED PROBLEMS ACROSS THE 17 STUDIED CASES

Problem Case ID
Class 1[2]3[4[5]6[7[8][9|w0][n|n2]13[14]15][16] 17
Artifact ambiguity problem
Ambiguous artifacts 9 2 2 9 2 3 6 3 4 2 2 8 10 5 7 0 9
62% | 17% | 15% | 75% | 11% | 43% | 33% | 25% | 27% | 12% | 29% | 50% | 67% | 36% | 37% | 0% | 50%
Trace path ephemerality problem
Volatile traces 5 4 7 8 7 4 7 3 8 6 3 7 9 7 11 | 0| 10
71% [29% | 50% | 73% | 32% | 76% | 39% | 23% | 40% | 32% | 60% | 50% | 75% | 58% | 58% | 0% | 56%

Trace path redundancy problem

Trace path duplicates | 0 [3 J o Jo[oJoJoJoJoJoJoJoJoJo]JoJo]o

Usage goal suitability problem

Missing goals

Requirements Analyst| 2 1 3 0 4 1 0 0 0 0 2 2 1 0 0 2 2
Solution Architect 0 0 1 1 3 0 0 0 0 0 0 0 1 0 1 0] O
Design Engineer 1 0 0 0 3 0 2 0 0 2 0 0 2 2 0 0 1
Project Manager 3 5 2 3 1 2 1 3 1 0 2 0 2 0 0 3 3
Developer 1 1 0 1 1 0 0 0 0 0 0 1 1 0 2 0 0
Test Engineer 4 3 5 3 5 1 3 3 2 1 3 2 3 2 3 4 2
Superfluous goals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trace path suitability problem
Missing trace paths 5 6 6 9 9 7 4 5 2 1 3 6 12 3 9 4 7
Superfluous trace paths | 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

highly regulated projects mentioned that the completeness of
traceability is of highest importance for audits. Due to time
pressure, ad-hoc traces were created to satisfy auditors. Those
ad-hoc traces were predominantly volatile.

Influence factor project type: We identified a strong ten-
dency that projects in product-oriented companies had con-
siderably less volatile traces than those in service-oriented
companies. We observed that product-oriented companies ap-
plied a more homogeneous development process with a single
tool platform or a highly integrated tool chain. Additionally,
product-oriented companies considered the time after project
completion as equally important as the project itself. Thus,
they had a strong interest in persistent traces. Service-oriented
companies had typically a more heterogeneous tool landscape
as different customers forced them to use different tools.
Informants of service-oriented companies stated that persistent
traces are less important for them since volatile traces are
cheap and sufficient to deliver the project. Investments in
expensive persistent traces were not beneficial for short term
project, and thus, were considered as cost drivers.

C. Trace Path Redundancy Problem

We considered trace paths as redundant if similar trace
paths exist that carried the same semantics. We observed this
problem only in one particular case (Case 2), where the project
manager defined a rather complex traceability information
model. This traceability information model contained three
redundant trace paths.

D. Usage Goal Suitability Problem

We identified missing traceability usage goals for all cases
of our study (see Table II). That means that all studied projects
struggled with defining suitable traceability usage goals.

Reason: Several informants stated that they consider the def-
inition of a suitable traceability usage goal model as extremely
challenging due to the complexity of the software process and
the multiplicity of actors. They further stated that guidance is
required on defining suitable traceability usage goals. In [22]
we discovered that a great number of different traceability us-
age scenarios are frequently used by practitioners in software
development projects. Similarly, Ramesh et al. [6] identified
several traceability usage scenarios in an industrial case study.
When defining a traceability strategy, all traceability usage
scenarios and related traceability usage goals could potentially
be relevant and must be considered.

Influence factor project role/activity type: We observed
that usage goals were missing mainly for three perspectives
of the development process, namely Requirements Analyst,
Project Manager, and Test Engineer. We further analyzed
our results for a possible reason for this phenomena. We
found that traceability usage goals are mainly related to four
types of tasks in the software development process: planning,
monitoring, validation, and verification. The above mentioned
perspectives Requirements Analyst, Project Manager, and Test
Engineer were most often concerned with those planning,
monitoring, validation, and verification tasks.

Influence factor project context: We found that cases gov-

erned by regulation or customer were defining specific usage
goals to address the information needs of the regulatory body
or customer. Because regulator or customer had documented
the information need in advance via contract, or regulatory
code, these usage goals were almost complete across the cases.
Ramesh [11] made a similar observation and identified that
the recognition of traceability problems and the formulation
of traceability goals are influenced by the project context.

E. Trace Path Suitability Problem

We observed that the amount of missing trace paths was
related to the amount of missing traceability usage goals. All
cases were lacking trace paths. More than half of the cases
were lacking a considerably high amount of trace paths.

Reason: Except for a single case, no traceability information
model was explicitly defined in advance of our study. Similarly
to the traceability usage goals, informants stated that they
consider the definition of a traceability information model as
to challenging due to diversity and complexity of the software
development process. Informants also stated that tools are
lacking, which provide capabilities to define, monitor and
enforce the traceability information model and that are fully
integrated with the software development tool chain. In a
previous study [3], we noticed that practitioners do not gain
enough value from the definition of a information model.

F. Summary

We conclude that all cases were lacking traceability usage
goals and required trace paths. In some cases, we even
observed a considerable amount of missing traceability usage
goals or required trace paths. Nevertheless, the majority of
the studied cases failed to define and apply a suitable project-
specific traceability strategy. We believe that the research must
proceed on this topic as traceability practitioners are currently
far away from applying suitable traceability strategies.

VII. THREATS TO VALIDITY

When planning and conducting our study we carefully
considered validity concerns. This section discusses how we
mitigated threats to the validity.

A. External Validity

Due to their nature, interview studies cannot be replicated as
identical interview circumstances cannot be recreated. Quali-
tative studies are primarily concerned with describing and un-
derstanding existing phenomena. We described such observed
phenomena from our interviews (see Section VI). The fact that
our cases diverge across multiple domains, locations, and sizes
contributes to the applicability of our findings. However, we
are aware of the fact that this kind of study is not generalizable.

B. Internal Validity

The instrumentation threat was addressed by applying qual-
itative content analysis [19], which must be guided by theory
from the beginning. We systematically derived a qualitative
description model for our study based on the defined re-
search questions. Activities of our study, like creating the

questionnaire, conducting the interviews, and extracting the
findings were all guided by this qualitative description model
as described in Section IV.

C. Construct Validity

We mitigated the threat of case relevance to validly address
the research questions by carefully analyzing every studied
case in advance. Therefore, we collected general information
about the company and the potential informant from the
internet. Previous to the actual interview, we gathered further
information from the informant via telephone. We especially
emphasized that the potential informant had extensive expe-
rience in software development projects and is capable to
provide insights of the whole process. We carefully analyzed
all gathered information and assessed this information against
our qualitative description model. Due to the fact that our
qualitative description model was derived from our research
questions, we are confident that our studied cases are relevant
to address our research questions (see also Section III).

In our study, we constructed a traceability usage goal model
from the analyzed software development process as described
in Section V. We opposed this model to the traceability usage
goal model, which we directly created from the statements
of our informants. As outlined in Table II, we identified
several problems across the 17 studied cases due to missing
traceability usage goals. Although, we were able to identify
many missing goals, we do not have empirical evidence that
we identified all missing traceability usage goals. To mitigate
this threat, we carefully assessed the results of our preliminary
prototypical interview. We plan a continuing study to provide
more empirical evidence regarding this issue.

D. Conclusion Validity

We employed a preliminary prototypical interview under
realistic conditions to improve our questionnaire and our
questioning technique. Thereby we emphasized on eliminating
influencing information from questions or questioning behav-
ior. All interviews of our study were conducted with one
informant in a single session without break. We offered no
room for distractions and interruptions during the interview in
order to avoid influences on subjects’ answers.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we focused on the discrepancy between
research and practice in traceability strategy definition. While
researchers argue that effective traceability requires an upfront
explicitly defined traceability strategy, previous studies showed
that practitioners rarely follow such explicit strategies. We set
up an interview study in order to assess that phenomenon and
the effectiveness of traceability strategies actually applied in
practice. As precondition for our work, we derived an analysis
procedure and five possible problem types that we assessed.
Apart from the actual results of the study, this assessment
procedure and the problems types we derived are an important
contribution for practitioners and other researchers who want
to assess traceability strategies by themselves.

All studied projects contained at least several of the assessed
problems in multiple instances. One project (Case 16) showed
fewer problems than the remaining ones. Specific about these
was the application of an integrated tool-chain. The impor-
tance of proper instrumentation for successful requirements
traceability is not a new finding, but our results emphasize
it again and show its importance. Apart from this case, we
found ambiguous artifacts across all projects and traces that
were often far from being ready-to-use. Furthermore, we found
for most projects a considerable mismatch between the goals
of the applied development process, the reported traceability
goals, and the actual existing traceability. All projects missed
at least some required traceability paths. Making traceability
not or not fully suitable for the individual project.

These findings suggest that an upfront-defined traceability
strategy is indeed required. However, we showed in this paper
that it is a complex task to determine all suitable trace paths
for a project. The decision for or against trace paths between
artifacts requires a detailed understanding of the projects
engineering process and goals. We conclude that traceability
strategies should be defined and assessed in a goal-driven
procedure. Future work will focus on developing techniques
that support practitioners in that procedure. Furthermore, we
are working on a continuing empirical study with multiple
feedback iterations to improve the proposed methodology for
assessing the quality of existing traceability usage strategies
in software development projects.

ACKNOWLEDGMENT

The authors would like to thank all practitioners participat-
ing in the interview study. We are supported by the German
Research Foundation (DFG): Ph49/8-1 and the German Min-
istry of Education and Research (BMBF): Grant No. 16V0116.

REFERENCES

[1] O.C.Z. Gotel and A. C. W. Finkelstein, “An analysis of the requirements
traceability problem,” in Proceedings st International Conference on
Requirements Engineering. 1EEE, 1994, pp. 94-101.

[2] O. Gotel, J. Cleland-Huang, J. Hayes, A. Zisman, A. Egyed,
P. Griinbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Méder,
“Traceability fundamentals,” in Software and Systems Traceability,
J. Cleland-Huang, O. Gotel, and A. Zisman, Eds. Springer London,
2012, pp. 3-22.

[3] P. Mider, O. Gotel, and I. Philippow, “Motivation matters in the
traceability trenches,” in Proceedings 17th International Conference on
Requirements Engineering. 1EEE, 2009, pp. 143-148.

[4] P. Arkley and S. Riddle, “Overcoming the traceability benefit problem,”
in Proceedings 13th International Conference on Requirements Engi-
neering. 1EEE, 2005, pp. 385-389.

[5] D. Leffingwell, “Calculating your return on investment from
more effective requirements management,” Rational, Tech. Rep.,
1997. [Online]. Available: http://www.ibm.com/developerworks/rational/
library/347.html

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

B. Ramesh, T. Powers, C. Stubbs, and M. Edwards, “Implementing re-
quirements traceability: a case study,” in Proceedings 2nd International
Symposium on Requirements Engineering. 1EEE, 1995, pp. 89-95.

I. Omoronyia, G. Sindre, and T. Stilhane, “Exploring a bayesian and
linear approach to requirements traceability,” Information & Software
Technology, vol. 53, no. 8, pp. 851-871, 2011.

K. Pohl, “PRO-ART: Enabling requirements pre-traceability,” in Pro-
ceedings 2nd International Conference on Requirements Engineering.
IEEE, 1996, pp. 76-84.

R. Domges and K. Pohl, “Adapting traceability environments to project-
specific needs,” Communications of the ACM, vol. 41, pp. 54-62, 1998.

O. Gotel and A. Finkelstein, “Extended requirements traceability: Re-
sults of an industrial case study,” in Proceedings 3rd IEEE International
Symposium on Requirements Engineering. 1EEE, 1997, pp. 169-178.

B. Ramesh, “Factors influencing requirements traceability practice,”
Communications of the ACM, vol. Volume 41 Issue 12, no. 12, pp.
37 — 44, 1998.

B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Transactions on Software Engineering, vol. 27, no. 1,
pp. 58-93, 2001.

P. Mider, O. Gotel, and I. Philippow, “Getting back to basics: Promoting
the use of a traceability information model in practice,” in Proceedings
of the ICSE Workshop on Traceability in Emerging Forms of Software
Engineering, 2009, pp. 21 -25.

P. Arkley, S. Riddle, and T. Brookes, “Tailoring traceability information
to business needs,” in Proceedings 14th International Conference on
Requirements Engineering. 1EEE, 2006, pp. 239-244.

K. Pohl, K. Weidenhaupt, R. Domges, P. Haumer, M. Jarke, and
R. Klamma, “PRIME - toward process-integrated modeling environ-
ments,” ACM Transactions on Software Engineering and Methodology,
vol. 8, no. 4, pp. 343-410, 1999.

P. Méder, P. Jones, Y. Zhang, and J. Cleland-Huang, “Strategic trace-
ability for safety critical projects,” IEEE Software, vol. 30, no. 3, pp.
58-66, 2013.

P. Rempel, P. Miéder, T. Kuschke, and I. Philippow, ‘“Requirements
traceability across organizational boundaries - a survey and taxonomy,”
in Requirements Engineering: Foundation for Software Quality, ser.
Lecture Notes in Computer Science, J. Doerr and A. Opdahl, Eds.
Springer, 2013, vol. 7830, pp. 125-140.

S. Curtis, W. Gesler, G. Smith, and S. Washburn, “Approaches to
sampling and case selection in qualitative research: examples in the
geography of health,” Social Science & Medicine, vol. 50, no. 7, pp.
1001-1014, 2000.

P. Mayring, “Qualitative content analysis,” in Forum: Qualitative
Social Research, vol. 1, no. 2, 2000. [Online]. Available: http:
//mbn-resolving.de/urn:nbn:de:0114-fqs0002204

N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni,
“Model traceability,” IBM Systems Journal, vol. 45, no. 3, pp. 515-526,
2006.

H. U. Asuncion, F. Frangois, and R. N. Taylor, “An end-to-end industrial
software traceability tool,” in Proceedings 6th joint meeting of the Euro-
pean Software Engineering Conference and the International Symposium
on Foundations of Software Engineering. ACM, 2007, pp. 115-124.

E. Bouillon, P. Mider, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in Requirements Engineering:
Foundation for Software Quality, ser. Lecture Notes in Computer Sci-
ence, J. Doerr and A. L. Opdahl, Eds. Springer, 2013, vol. 7830, pp.

