
Trace Queries for Safety Requirements in High
Assurance Systems

1Jane Cleland-Huang, 2Mats Heimdahl, 3Jane Hu↵man Hayes,
4Robyn Lutz, 5Patrick Maeder

1 DePaul University, Chicago, IL 60422, USA
jhuang@cs.depaul.edu

2 University of Minneapolis, Minneapolis, MN, USA
heimd002@umn.edu

3 Kentucky State University, Lexington, KY, USA
hayes@cs.uky.edu

4 Iowa State University, Ames, IA, USA, and Jet Propulsion Laboratory/Caltech
rlutz@iastate.edu

5 Johannes Kepler University, Linz, Austria
patrick.maeder@jku.at

Abstract. [Context and motivation] Safety critical software systems
pervade almost every facet of our lives. We rely on them for safe air and
automative travel, healthcare diagnosis and treatment, power generation
and distribution, factory robotics, and advanced assistance systems for
special-needs consumers. [Question/Problem] Delivering demonstra-
bly safe systems is di�cult, so certification and regulatory agencies rou-
tinely require full life-cycle traceability to assist in evaluating them. In
practice, however, the traceability links provided by software producers
are often incomplete, inaccurate, and ine↵ective for demonstrating soft-
ware safety. Also, there has been insu�cient integration of formal method
artifacts into such traceability. [Principal ideas/results] To address
these weaknesses we propose a family of reusable traceability queries
that serve as a blueprint for traceability in safety critical systems. In
particular we present queries that consider formal artifacts, designed to
help demonstrate that: 1) identified hazards are addressed in the safety-
related requirements, and 2) the safety-related requirements are realized
in the implemented system. We model these traceability queries using
the Visual Trace Modeling Language, which has been shown to be more
intuitive than the defacto SQL standard. [Contribution] Practitioners
building safety critical systems can use these trace queries to make their
traceability e↵orts more complete, accurate and e↵ective. This, in turn,
can assist in building safer software systems and in demonstrating their
adequate handling of hazards.

Keywords: safety critical software, fault trees, traceability, visual trace
queries, formal methods

patrickr

patrickr
In Proc. 18th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2012), Essen, Germany

patrickr
@INPROCEEDINGS{conf/refsq/Cleland-HuangHHLM12, title={Trace queries for safety requirements in high assurance systems},
 author={Jane Cleland-Huang and Mats Per Erik Heimdahl and Jane Huffman Hayes and Robyn R. Lutz and Patrick M{\“a}der}, booktitle={Requirements Engineering: Foundation for Software Quality - 18th International Working Conference, REFSQ 2012, Essen, Germany, March 19-22, 2012. Proceedings}, pages={179--193},year={2012}, publisher={Springer},doi= {10.1007/978-3-642-28714-5_16}}

Patrick Mäder
Jane Cleland-Huang, Mats Heimdahl, Jane Huffman Hayes, Robyn Lutz, and Patrick Mäder. "Trace queries for safety requirements in high assurance systems." In Requirements Engineering: Foundation for Software Quality, pp. 179-193. Springer Berlin Heidelberg, 2012.

1 Introduction

Requirements traceability, defined as the “ability to follow the life of a require-
ment in both a backward and forward direction” [6] is a critical element of any
rigorous software development process. For example, the U.S. Food and Drug
Administration (FDA) states that traceability analysis must be used to verify
that the software design implements the specified software requirements, that
all aspects of the design are traceable to software requirements, and that all
code is linked to established specifications and test procedures [5]. Similarly,
the Federal Aviation Administration (FAA) has established DO-178B [4] as the
accepted means of certifying all new aviation software, and this standard spec-
ifies that at each stage of development “software developers must be able to
demonstrate traceability of designs against requirements.” Software Process Im-
provement standards that are being adopted by many organizations, such as
CMMI, require similar traceability practices.

Traceability is broadly recognized as an important factor in building high-
assurance software systems. Much of this software is safety critical, meaning that
there could be devastating harm if the software fails to operate correctly. Safety-
critical software systems permeate our society and are entrusted with the lives of
everyday people on a daily basis. For example, a commuter on a train depends
on the switching software, an airline passenger depends on the air tra�c control
software, and a patient in a hospital depends on the e-pharmacy software.

However, there is almost universal failure across both industry and govern-
ment projects to implement successful traceability, even in safety-critical systems
that require it. This has been found to be due in large part to the di�culty of con-
structing useful traceability queries using existing tools [18]. Traceability links
may be generated at a high level, may be too generic, may be incomplete, may
be inaccurate [21], and/or may not be deemed appropriate as evidence of soft-
ware safety. Changes to artifacts, and hence to their traceability, often require
an inordinate amount of traceability e↵ort on the part of analysts attempting to
obtain certification of even a small change to an already certified system.

The failure of traceability is of special concern in safety-critical systems where
the tracking of hazards to their resolutions is mandated by certification author-
ities. In such systems, the traceability from hazards to software safety require-
ments to implemented and verified design solutions forms an essential piece of
the evidence chain used to show that the resulting system is safe [1, 11, 17].
The full potential of traceability as a value-enhancing activity has not yet been
realized in safety-critical systems.

To address these shortcomings, we consider the work of two stakeholder types
as a safety-critical system is built, certified or modified: developer and software

safety engineer. The developer prepares traditional development artifacts such as
system requirements, software requirements, design (perhaps as UML diagrams),
code, and test cases. Traceability matrices are generated for these artifacts (such
as from system to software requirements, from code to test cases, etc.). The
software safety engineer focuses on how software can contribute to a systems
safety or can compromise it by putting the system into an unsafe state, and

is interested in tracing the relationship between fault tree analysis results and
software requirements and verification artifacts. These safety-related items also
require associated traceability support.

To focus on the traceability needs of these stakeholders, this paper extends
our prior work. It identifies and describes a set of twelve safety-related trace-
ability goals that address essential traceability questions needed to demonstrate
that a software intensive system meets its safety requirements. These queries
cover basic life-cycle activities such as tracing from requirements to test cases,
as well as more complex activities such as integrating hazard analysis and formal
models and their results into the traceability environment. The trace queries are
presented using the Visual Trace Modeling Language (VTML), which has been
demonstrated in our prior work to be more intuitive for users to understand
than the defacto standard of SQL [18]. The traceability queries are designed to
deliver value-enhanced traceability in support of the producers of safety-critical
software systems.

In other areas of software engineering and requirements engineering, reusable
solutions, often in the form of patterns, are used to increase productivity and
improve quality by capturing and applying domain knowledge to repeated prob-
lems. Traceability is no exception. Certain questions must be answered about a
software system in order to achieve certification, such as “have all hazards been
addressed in the requirements?” The software traceability techniques presented
here help answer these questions. Like design patterns, the traceability queries
are constructed to be reusable both as the system evolves and, more generally,
across di↵erent systems. If modeled in advance, the traceability queries provide
strategic guidance to software developers as they plan their traceability infras-
tructure and associated process. Reusing proven and familiar traceability queries
can ease the e↵ort of the initial certification process and provide the necessary
infrastructure for supporting change, as well as helping to demonstrate safety
following that change.

The remainder of paper is laid out as follows. Section 2 discusses the chal-
lenges of delivering e↵ective traceability in a safety critical project, and intro-
duces the concept of the Traceability Information Model (TIM). Section 3 intro-
duces a pacemaker example, which is used to illustrate our approach. Section 4
briefly describes the VTML. Section 5 introduces and models the safety-related
traceability queries, and illustrates their usefulness for the pacemaker example.
Section 6 describes related work, and finally, section 7 summarizes our contribu-
tion and discusses future work.

2 Traceability in a Safety Critical Environment

Traceability decisions in a project should be documented in and driven by a
traceability information model (TIM) or traceability meta-model, as depicted
in Figure 1 [2, 19]. A TIM is often represented as a UML class diagram and is
composed of two basic types of entities: traceable artifact types represented as
classes, and the permitted trace types between the artifact types represented as

associations. Traceable artifact types serve as the abstractions supporting the
traceability perspective of a project.

Preliminary
Hazard

id

Fault Tree

id
topLevelHazard

System
Requirement

id

SoŌware Requirement

descripƟon
id

type

Formal State-
Based Model

id
name

Code Class

id
name

UML Class

id
name

Test Case

id
name
status

Test Log

comments
date
id

status

Counter Example

descripƟon
id

CTL Formula

formula
id

Minimum Cut Set

faultSet
id

AssumpƟon

id
predicate
status

Regulatory Code

id
relevant

records
violaƟons

extracted
from

must
hold

describes
environment

derived
from

derived
from

describes event
transiƟons

prevents

constrains
unwanted
events

tests

violates

formalizes

saƟsfies

implements

implements
record
results

complies to

Traceable artifact type

Permitted trace type

Key property

Legend

Fig. 1. A Traceability Information Model for a Safety Critical System

Figure 1 depicts the core traceable components of a safety critical system.
The typical software development artifacts are seen along the left side of the
diagram: system requirements are allocated to software requirements which are
allocated to design elements documented as UML classes which are implemented
by code. Test cases are used to test the software requirements with results being
logged. Meanwhile, the safety critical nature of the software system requires
additional artifacts which must also be traced, shown mainly on the right hand
side of the diagram. The Preliminary Hazard artifact documents hazards that
could lead to system failure. Such hazards are examined in more detail in a fault
tree which looks at events that could lead to the hazards. The possible states and
transitions for a system are documented in a formal state-based model. Certain
assumptions about the environment are also captured. Formal analysis of the
system may detect counter examples that show that a state can be entered which

violates safety properties, formalized in this TIM using Computation Tree Logic
(CTL). System Requirements are specified to prevent hazards from occuring by
preventing the unwanted events documented in the Minimum Cut Sets. The
Software Requirements may also have to comply with Regulatory Codes. Note
that because this paper does not address the safety case, we have chosen not
to include it in this TIM. Similarly, since we focus on product requirements, we
have not shown process requirements in this TIM.

Each traceable artifact type may also possess one or more properties, which
are used later in the process to specify traceability queries. For example, the
“Software Requirement” artifact type includes ‘id’, ‘description,’ and ‘type.’
Property values can be included in trace query results, while properties or mul-
tiplicities can be used to define constraints that filter out unwanted artifacts.
Filters can also be created based on trace types associated with each of the
traceability paths.

Investing the e↵ort to define a TIM is worthwhile because the TIM makes
it simpler to generate and execute traceability queries. Furthermore, the TIM
can be mapped to physical artifacts, and therefore a TIM and its associated
trace queries can be reused across di↵erent products simply by re-establishing
mappings in the new project [18]. In this paper, we present a basic TIM and
define a set of reusable trace queries that are specific to the safety-critical domain.

3 Illustrative Example

We introduce a simplified pacemaker to illustrate the traceability infrastructure
and to contextualize the proposed trace queries. A pacemaker [3] is an embedded
medical device that monitors the heartbeat (HB) and regulates the heart when
it is not beating at a normal rate. A pacemaker is safety critical because certain
failures can harm the patient’s health or contribute to loss of life [3, 13].

3.1 Fault Tree

One of the initial tasks in building a safety-critical software system is a prelimi-
nary hazard analysis (PHA) [12] to identify a set of potential high-level hazards,
representing undesirable states of the system. System-level hazard analysis is
used to help decide which hazards can be avoided (e.g., by changing the opera-
tional environment) and which hazards must be handled by the system. The PHA
informs both the system safety requirements and the derived software safety re-
quirements that constrain the design of the system. Each of the hazards in the
PHA is typically explored by constructing an associated fault tree (FT) [23,24].
A fault tree refines an initial hazard into a series of lower level intermediate or
basic events, which, if they occur, would contribute toward the occurrence of
the hazard. The FT uses boolean logic to depict the causal events leading to the
root node. Figure 2 shows an excerpt from a fault tree constructed to investigate
the ways in which the pacemaker could fail to provide treatment to the patient
when needed [15].

Failure to pace
when patient

needs it

Failure to identify
Heartbeat
Correctly

Failure to
generate a

required pulse

Sensing
failure

Reporting
failure

Executing
in inhibited

mode

Failure to
generate a
pulse when

no HB

Executing
in triggered

mode

Failure to
generate a

pulse following
every

heartbeat

Controller
fails to

switch from
triggered to

inhibited
mode

Event recorder
fails to switch
from inhibited

to triggered
mode

Inhibited
mode failure

Trigger
mode failure

Failure to
switch modes

correctly

Calculation
failure

Uses
Triggered

mode

Misadjusts
sensor

interval to
patient’s

activity level

Fig. 2. A Fault Tree

As depicted, the hazard under analysis is Failure to pace when patient needs

it. Two identified intermediate faults are Failure to identify heartbeat correctly

and Failure to generate a required pulse. The first of these has three contributing
faults, namely sensing, calculation, and reporting failures, any one of which can
cause the pacemaker to fail to pace correctly. The second intermediate fault has
sub-faults related to inhibited mode failures, trigger mode failures, and transi-
tioning from one mode to another. For purposes of this example, we are partic-
ularly interested in the inhibited mode failure which can occur when the pace-
maker is in inhibited mode and there is a failure to generate a pulse when no
heartbeat is detected. We are also interested in the calculation failure that oc-
curs when triggered mode is used and the pacemaker fails to adjust the sensor
interval to the patient’s activity level.

A cut set in a fault tree is defined as a set of basic events (leaf nodes) whose
simultaneous occurrence would cause the top event in the fault tree to occur [12].
A cut set is said to be minimum if it cannot be reduced without losing its status
as a cut set. An example of a minimum cut set for the pacemaker is “failing
to generate a pulse when no heartbeat is detected” while “in inhibited mode.”
If both of these leaf nodes occur at the same time, the pacemaker will fail to
pace when needed, a hazard to the patient. Almost every fault-tree modeling
tool has the capability to return the set of minimum cut sets that can be used
to identify common cause failures across multiple fault trees, i.e., events that

Table 1. A Subset of Requirements for the PaceMaker System

REQ101 Inhibited Mode: While in inhibited mode, if no heart beat is detected by the
pacemaker’s sensor during a programmable sensing interval, the pacemaker
shall generate a pulse.

REQ102 Triggered Mode: While in triggered mode, the pacemaker shall regulate the
heartbeat by generating a pulse following every heartbeat.

REQ103 Track Heartbeat Rate: While in inhibited mode, the EventRecorder shall
track the heartbeat rate.

REQ104 Transition to Triggered Mode: While in inhibited mode, if the heartbeat
rate exceeds a threshold, the EventRecorder shall command a switch to trig-
gered mode.

REQ105 Transition to Inhibited Mode: While in Triggered mode, if the number of
heartbeats exceeds 24 in a 6000 msec recording interval, the Controller shall
command a switch to Inhibited mode.

REQ106 Activity Sensor: The pacemaker shall monitor the activity level of the pa-
tient.

REQ107 Activity Response: The pacemaker shall adjust the duration of the sensing
interval to match the patient’s current activity level.

occur in the minimum cut sets of multiple fault trees. In addition, some tools
can return common cause events.

3.2 Safety-Related Software Requirements

The basic functionality of the pacemaker involves two di↵erent operation modes:
inhibited and triggered [14]. In inhibited mode, the pacemaker generates a pulse
only if the heart fails to generate its own pulse, while in triggered mode, the
pacemaker generates a pulse following each heartbeat. Some pacemakers, such
as the one illustrated here, also have the ability to monitor the activity level of
a patient in order to adjust the sensing interval accordingly. These requirements
are more formally depicted in Table 1. Note that these requirements may be
found as a subset of the System or Safety Requirements from the TIM shown in
Figure 1.

3.3 Safety Analysis

Once failure causes are well understood and the software requirements to ad-
dress these (called software safety requirements) are specified and validated,
developers construct the design to satisfy the requirements and produce code
to implement the design. Certain properties must be satisfied by the pacemaker
design and implementation in order to assure patient safety. Moreover, these
properties must be shown to be satisfied in order for the company producing the
pacemaker to gain approval to market and sell their devices. An example of such
a safety-related property is requirement REQ101 related to pulse generation. An
examination of the fault tree in Figure 2 shows that this property is the inverse
of the minimum cut set containing the two leaf nodes “Fails to generate a pulse”
and “Is in inhibited mode.”

Many of the safety engineer’s tasks thus involve assurance that traceability
exists between the safety requirements and the intermediate and final products.

Some of the assurances the safety engineer is responsible for providing involve
relatively straightforward queries such as “Are all initially identified hazards cov-
ered by a fault tree?” Other assurances involve more complicated traceability
queries such as “Do all minimum cut sets have an associated mitigating require-
ment?” or “Are all common cause failures in the set of fault trees addressed by
one or more design mechanisms?” In previous work we presented a set of eleven
standard trace query patterns needed for the assurance of requirements for an
e-health software system that did not have explicit safety requirements [18]. In
this paper we extend those queries to include trace queries needed to handle the
assurance of software safety requirements.

For each trace query, we describe how the query is represented using our
Visual Trace Modeling Language (VTML), and discuss the results returned by
an example of the traceability query for the pacemaker. Each of these queries
addresses a common question that must be repeatedly posed by either a safety
engineer or a developer in the safety-critical domain, for which current tech-
niques generally require significant manual e↵ort to answer. Representation of
the queries in VTML enables the associated queries to be used and reused across
the artifacts in the TIM. If a query returns bad news, the safety engineer can
place this item on a watch list. New queries then can be periodically run behind
the scenes. If new fault trees are identified or existing fault trees are updated
in response to evolution in requirements, design, or operational experience [17],
the safety engineer can perform a delta trace to determine if added or modified
hazards are adequately covered.

4 Visual Trace Modeling Language (VTML)

We illustrate the trace queries in this paper using VTML. VTML assumes the
presence of an underlying TIM and then represents queries as a set of filters
applied to a structural subset of that model. A VTML query is composed of a
connected subset of the artifacts and trace types defined in the TIM as well as
a set of associated filter conditions. These filters are used to eliminate unwanted
artifacts or to define the data to be returned by the trace query.

Figure 3 depicts the basic elements of a VTML query. The initial query scope
specifies the subset of artifacts for which the trace is to be executed, where scope
could be as small as a single artifact, or as broad as the entire set of artifacts of
that type. VTML depicts this scope visually using the start symbol. The three
compartments of the class notation are used respectively to depict the name of
the class, properties used in filter conditions or to specify return results, and
functions used to compose and extract aggregate data from the class. Return
values are annotated with a bar chart symbol, while properties used to filter
results are annotated with a filter symbol and also depict a valid filter expression.
As shown in this example, filters can be applied at both the class and the trace
matrix level. The example in Figure 3 can be read as follows assuming source
artifacts are use cases and target artifacts are test cases: “For the selected use
cases, return the description of all use cases which trace to more than two failed

Source Artifact

description

COUNT(id)

Target Artifact

result = ‘failed’2..*

Queried traceable
artifact types

Property
filter

Relation count
filter

Return value
of the query

Relation
attribute filter

Context: input-set
type, selectable by user

Aggregation
function

type = ‘trace’

Queried relation
type

Fig. 3. Features of a visual traceability query

test cases. Aggregate the results according to some function f, and display the
description and the aggregated value.” A more complete description of VTML
including its metamodel and an extensive set of queries is provided in our prior
work [18].

5 Safety-Related Trace Queries

Traceability provides support for specific software engineering goals, as depicted
in Table 2. These goals are derived from a number of sources including Leve-
son’s set of basic software system safety tasks [12], our own experiences working
with safety-critical systems [7,16], an analysis of several documents prepared as
submissions for approval of medical devices, and a study of related literature,
handbooks, and guides [9].

For each of these traceability goals, there are several di↵erent supportive
traceability queries that can be used by the safety analyst. For example, if we
are interested in Traceability Goals #2 (safety-related requirements covered by
design) and #6 (safety-related requirements have been tested), we might focus on
tracing requirements to code. Queries of interest might include (a) “return a list
of all requirements and the associated classes in which they are implemented”,
and (b) “count the number of requirements without implemented classes.” These
queries reveal something about the coverage of requirements in the implemen-
tation. Similarly, (c) “return a list of all requirements without associated imple-
mented classes” or (d) “count the number of requirements without implemented
classes” both reveal information about lack of coverage. We could also execute
transitive trace queries such as (e) “return a list of all requirements with classes
that have failed test cases in the past week,” or we could incorporate customized
functions into the trace queries as (f) “return a list of requirements with classes
that exhibit cyclomatic complexity values in the top 5 percentile.”

As it is not feasible for us to illustrate each type of query for each of the
twelve proposed trace queries, we illustrate our approach with trace queries for
three of the goals that are particularly relevant to the safety-domain, and which

are quite di↵erent from queries found in non-safety critical domains. All of these
queries assume the underlying presence of the TIM depicted in Figure 1.

Table 2. Safety-Related Traceability Goals

1. Demonstrate that all common cause failures in the set of fault trees are covered by re-
quirements.

2. Demonstrate that all safety-related requirements are satisfied in the design.
3. Determine which regulatory codes are covered by requirements.
4. Demonstrate that all safety-related design elements are fully realized in the code.
5. Identify parts of the code which represent standard safety mechanisms including architec-

tural or design mechanisms such as safety interlocks, heartbeat or fault-data redundancy,
to prevent a specific hazard from occurring.

6. Demonstrate coverage of safety-related requirements by test cases.
7. Demonstrate that safety-related test cases have passed.
8. Demonstrate that properties specifying safety-related requirements to be model checked

have been model checked.
9. Demonstrate that all counter-examples produced by the formal model checker for any of

the safety-related requirements have been reviewed by a safety engineer.
10. Determine the potential impact of changing a requirement on its associated downstream,

safety-related TIM artifacts.
11. Determine which requirements might be impacted by failure of a safety-related test case.
12. Determine which formal models might be impacted by a change to an environmental as-

sumption.

5.1 Requirement Coverage of all Common Cause Failures

In support of traceability goal # 1, it is important to show that all minimum cut
sets derived from the modeled fault trees are covered by requirements. Showing
that each minimum cut set is associated with one or more mitigating require-
ments can provide a safety engineer with the information he or she needs to
assess whether the hazard is fully mitigated. We present an example of one sup-
porting trace query in Figure 4. This query returns a list of minimum cut sets
and their associated requirements for one or more fault trees. As the VTML
assumes a default cardinality of 1..*, the query only returns the minimum cut
sets which have related system and software requirements. A similar query in
which a cardinality filter of 0 is placed on the link between Minimum Cut Set

and System Requirement would list only the minimum cut sets without system
level requirements coverage.

Fault Tree
Minimum
Cut Set

System
Requirement

faultSet

Software
Requirement

id
description

topLevelHazard

Fig. 4. Trace Query: Retrieve requirements providing coverage for minimum cut sets
derived from one or more fault trees.

Applying the trace in Figure 4 to the pacemaker example produces a trace
matrix that includes the entries depicted in Table 3. These traces not only
demonstrate that the minimum cut sets are associated with software require-
ments, but provide the safety engineer with information needed to assess how
well they mitigate the common cause failures.

Table 3. A Subset of Results Returned by the Minimum Cut Set Coverage Query

Fault Tree Minimum Cut Set System Requirement Software Requirement
Failure to pace
when patient
needs it

(i)executing in inhibited
mode,(ii)failure to gen-
erate a pulse when no
HB

Monitor battery power
to ensure pulse can be
given.

Log failure event internally
for diagnosis; Send wire-
less phone warning to health
provider upon recurrence.

Failure to pace
when patient
needs it

(i)uses triggered model,
(ii)adjusts sensor inter-
val to patient’s activity
level

Activity sensors are
monitored at all times
for correct function.

If the respiration sensor (in-
dicating activity level) fails,
the pacemaker shall use In-
hibited mode

5.2 Integrating Formal Method Results

There is an increasing trend in safety-critical software development toward more
formally verifying the correctness of the design through model checking [14].
However in current practice, the model checking results are often disconnected
from other software artifacts and are therefore often not used in the traceability
scheme. In this section we propose a trace queriy for integrating model checking
results into the TIM in support of Trace Goal #8. The query depicted in Figure 5
utilizes the formal model components of the TIM. First, it identifies any counter
examples produced by the model checker. If any are identified, it returns a list
of the associated CTL formulas and related requirements.

Model Checker
Counter Example CTL Formula

formula

Software
Requirement

id
description

description

Fig. 5. List all CTL formulas and related requirements for any counter examples pro-
duced by the model checker

To illustrate this query, consider the pacemaker requirement REQ101 which
states that “While in inhibited mode, if no heart beat is detected by the pace-
maker’s sensor during a programmable sensing interval, the pacemaker shall
generate a pulse.” An associated CTL could be defined as follows [14]:

AG((sensed = 0 ^ timerSenseT imeUp = 1 ^ inhibitedMode = 1))

=) EF (pulseGen = 1 ^ inhibitedMode = 1))

This and similar CTL properties are checked by the model, and results are
stored in a model checking repository. Assuming no counterexamples are pro-
duced, the query in Figure 5 returns an empty list, adding some degree of con-
fidence that given the as-modeled behavior of the system, this requirement is
always satisfied.

Figure 6 depicts two additional kinds of supporting trace queries for counting
artifacts and for identifying missing elements. The first shows how a trace query
can be used to return a simple count of counter examples produced by the most
recent model checking run, while the second one returns a list of mitigating
requirements without associated CTL formulas. Both of these trace queries and
their results can be used by a safety engineer to help manage safety requirements
throughout the software development e↵ort.

Model Checker
Counter Example

COUNT(id)

(a) Query 3a: Return a count of counter examples produced by the most recent model
checking run

Software
Requirement CTL Formula

id

description

type=”mitigating”

0

(b) Query 3b: Return a list of mitigating requirements without associated CTL formulas

Fig. 6. Supporting Traces for Integrating Results from the Model Checker

5.3 Assumptions

In our final example we present a trace query that supports Goal #12. Each
formal model typically has a set of assumptions associated with it. These as-
sumptions are often in the form of predicates such as “A patient’s heartbeat is
always (can be assumed to be) in the range x to y.” or “the sensor that checks
the patient’s respiration rate never (can be assumed to never) fails.” Sometimes
during use of the system, or due to changes in the environment, these assump-
tions are found to be, or become, incorrect. The properties verified on that
model were based on those assumptions, so we can no longer be confident in
safety arguments based on the model. In the trace query depicted in Figure 7,
we therefore retrieve a list of all CTL properties and associated requirements
that are impacted by a change in one or more assumptions.

Assumption CTL Formula

formula

Formal State-
Based Model

name

Software
Requirement

id
description

predicate
status=”modified”

Fig. 7. Trace Query:List all requirements impacted by a change in an environmental
assumption and the formal models that must be re-checked

5.4 Prototype

One of the major benefits of VTML is that trace queries are defined over the
TIM, and do not reference project-specific data structures. However, the queries
must be transformed into a query format that can be applied to the physical
data sources. All of the trace queries described in this paper are fully executable
in our prototype tool. Our prototype transforms the features of a visual trace-
ability query step by step into an executable SQL query. It first uses an XSLT
script that translates queries into XMI format, and then transforms them into
executable SQL statements [18]. Defining and writing trace queries using VTML
applied over a standard TIM, makes the queries fully portable across projects. It
means that an organization adopting our appproach could create both a reusable
TIM and a reusable set of safety-related trace queries which address all of the
traceability goals defined in Table 2. This portability is achieved by mapping the
conceptual elements of the TIM, including the artifact types and their properties,
to physical fields in the underlying database.

6 Related Work

Most discussion of traceability in the development of safety-critical systems is
in the form of standards and guidebooks that mandate the tracking of hazards
and their mitigations through the software life cycle but do not describe query
techniques to help achieve this. However, safety cases [11], dependability cases [1],
and assurance cases all use traceability to construct structured arguments to
justify goals by tracing and managing the links from evidence to those goals.
Recommended practice is to maintain the case while constructing the system
so that every step of development preserves the established chain of evidence.
Although there is a large body of work in the more general area of traceability,
to the best of our knowledge, there is little or no research that investigates
techniques for using traceability to support a broad spectrum of safety-related
queries in the way described in this paper. Extending the work described here
to support assemblage and maintenance of safety case evidence is a natural and
planned extension.

Peraldi-Frati and Albinet proposed a model for traceability in safety-critical
systems [20]. Their work focused on requirements, design, and test cases, and
showed how to establish satisfies relationships from design to requirements, and

verifies relationships between test cases and requirements. Their proposed in-
frastructure incorporates formal models that demonstrate the satisfaction of a
specific requirement. Katta and Stalhane define a conceptual model of traceabil-
ity for safety systems [10]. Their approach creates a traceability graph (similar
to a TIM) depicting a wide variety of artifacts and their associated traceability
links. For example, they include hazards, system level requirements, software
requirements, architectural components, and common cause failures. However,
neither of these approaches incorporates results from fault tree analysis nor in-
tegrates formal methods into the traceability infrastructure. Furthermore, in
general, any publications we found on tracing safety-critical requirements focus
upon describing the actual artifacts to be traced, and fail to highlight the tracing
benefits achieved through a useful and e↵ective set of traceability queries.

Hill and Tilley propose a traceability approach for supporting the assurance
and recertification of safety-critical legacy systems [8]. However, they primar-
ily describe traces between requirements, process improvement standards, and a
risk taxonomy and do not discuss any specific types of software artifacts beyond
requirements. Finally, other researchers such as Sanchez et al. have explored the
role of traceability in safety-critical, model-driven environments [22]. Their ap-
proach is designed to demonstrate that hazards translate into requirements, and
that architectural decisions designed to satisfy those requirements are success-
fully transformed into the final code.

7 Conclusions

The traceability goals and queries described in this paper support a number of
critical safety engineering tasks. First, they can be used during the development
process to ensure that safety is being built into the system, and second, they can
be used to generate traceability matrices needed by certification and approval
bodies such as the FDA. Combining the various types of coverage queries pro-
duces relatively sophisticated and clearly useful trace matrices. It also identifies
problem areas such as safety-related requirements without passed test cases, or
safety-related requirements potentially impacted by changed values of environ-
mental variables which provide significant support towards building a demon-
strably safe software system.

The primary contribution of this paper is the presentation of a query-driven
approach to tracing requirements in safety-critical software systems. At the start
of a project, safety engineers and developers can strategically plan the TIM, map
it to specific database tables or other data structures, and carefully define the
safety-related trace queries that are to be accessible throughout the project.
This kind of approach enables engineers to build traceability into the software
development life-cycle, so that traceability links can be used not only for docu-
mentation purposes during the certification process, but for actually improving
developers’ understanding of safety-related issues throughout the software de-
velopment life-cycle.

8 Acknowledgments

This work was supported by NSF grants CCF-0916275 with funds from the
American Recovery and Reinvestment Act of 2009, CCF-1143830, CCF-1143734,
CCF-0810924 and CCF-0811140. This research is also funded in part by the
Austrian Science Fund (FWF): M1268-N23.

References

1. D.Jackson, M. Thomas, and L.I.Millet. In Software for Dependable Systems: Suf-
ficient Evidence?, National Research Council, 2007.

2. R. Dömges and K. Pohl. Adapting Tracability Environments to Project-Specific
Needs. Communications of the ACM, 41(12):54–62, dec 1998. ISSN 0001-0782.

3. K. A. Ellenbogen and M. A. Wood. Cardiac Pacing and ICDs. Blackwell Publish-
ing, 2005.

4. Federal Aviation Authority (FAA). DO-178B: Software Considerations in Airborne
Systems and Equipment Certification, faa’s advisory circular ac20-115b edition.

5. Food and Drug Administration. Guidance for the Content of Premarket Submis-
sions for Software Contained in Medical Devices, 2005.

6. O. Gotel and C. Finkelstein. An analysis of the requirements traceability prob-
lem. In Requirements Engineering, 1994., Proceedings of the First International
Conference on, pages 94 –101, apr 1994.

7. M. P. E. Heimdahl. Safety and software intensive systems: Challenges old and new.
In FOSE, pages 137–152, 2007.

8. J. Hill and S. Tilley. Creating safety requirements traceability for assuring and
recertifying legacy safety-critical systems. In Requirements Engineering Conference
(RE), 2010 18th IEEE International, pages 297 –302, 27 2010-oct. 1 2010.

9. Joint Software System Safety Committee. Software System Safety Handbook Tech-
nical and Manegerial Team Approach, 1999 edition.

10. V. Katta and T. Stalhane. A conceptual model of traceability for safety systems.
In CSDM - Poster Presentation, 2010.

11. T. P. Kelly and J. A. McDermid. A systematic approach to safety case mainte-
nance. In SAFECOMP, pages 13–26, 1999.

12. N. G. Leveson. Safeware, System Safety and Computers. Addison Wesley, 1995.
13. B. Littlewood and L. Strigini. Validation of ultrahigh dependability for software-

based systems. Commun. ACM, 36(11):69–80, 1993.
14. J. Liu, S. Basu, and R. Lutz. Generating variation point obligations for composi-

tional model checking of software product lines. In Journal of Automated Software
Engineering, pages 39–76, Vol. 18 (1),2011.

15. J. Liu, J. Dehlinger, H. Sun, and R. R. Lutz. State-based modeling to support
the evolution and maintenance of safety-critical software product lines. In ECBS,
pages 596–608, 2007.

16. R. R. Lutz. Software engineering for safety: a roadmap. In ICSE - Future of SE
Track, pages 213–226, 2000.

17. R. R. Lutz and I. C. Mikulski. Requirements discovery during the testing of safety-
critical software. In ICSE, pages 578–585, 2003.

18. P. Mäder and J. Cleland-Huang. A visual traceability modeling language. In
MoDELS (1), pages 226–240, 2010.

19. P. Mäder, O. Gotel, and I. Philippow. Getting Back to Basics: Promoting the Use
of a Traceability Information Model in Practice. In 5th Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE2009). In conjunction with
ICSE09, Vancouver, Canada, May 2009.

20. M.-A. Peraldi-Frati and A. Albinet. Requirement traceability in safety critical
systems. In Proceedings of the 1st Workshop on Critical Automotive applications:
Robustness & Safety, CARS ’10, pages 11–14, New York, NY, USA, 2010.
ACM.

21. B. Ramesh and M. Jarke. Toward reference models for requirements traceability.
IEEE Trans. Softw. Eng., 27:58–93, January 2001.

22. P. Sánchez, D. Alonso, F. Rosique, B. Álvarez, and J. A. Pastor. Introducing
safety requirements traceability support in model-driven development of robotic
applications. IEEE Trans. Computers, 60(8):1059–1071, 2011.

23. N. R. Storey. Safety Critical Computer Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1996.

24. K. J. Sullivan, J. B. Dugan, and D. Coppit. The galileo fault tree analysis tool. In
FTCS, pages 232–235, 1999.

